

For servo motor

Reducer

ABLE REDUCER

VRS series VRB series VRL series

Future Creation of Richer Industries - For Ceaseless Development

NIDEC-SHIMPO developed and released Ringcone CVT equipped with an independent transmission in 1952.

NIDEC-SHIMPO has continued to develop products meeting customer needs and produce new products on the basis of driving technology of reducers, etc. as well as advanced electronic technology and software development.
NIDEC-SHIMPO's technical testing and reliability have been proven through the award of many prizes by the Japanese Machinery Society, including the National Invention Award. NIDEC-SHIMPO will offer ideal technologies and products by exactly meeting market demand for future development in various industries.

Reducer

Reducers and transmissions are essential as driving parts within factory automation robots, machine tools, or conveyor systems.

Measuring instrument

Tester

Used to measure "Strength" of all kinds necessary for R&D or QC, e.g. tensile strength, compression strength, switching strength, etc.

Transmission

RX CVT that was successfully developed in Japan with the first independent transmission.

Reducer & transmission

Measuring instruments

PRODUCTS

FA Machinery

Ceramic devices

Others

electric potter's wheel

NIDEC SHIMPO is also the largest maker in ceramic machinery. It commercialized the first motor-driven pottery wheel in the world, showing market share of 80% home and 40% overseas.

Besides, NIDEC SHIMPO is manufacturing and selling various ceramic products including electric kiln, positioning as top brand of total maker.

FA machinery and testers equipped with operating or measuring technology are the major fields of SHIMPO.

INDEX

VRS series

High moment load type with high-precision

Features	VR2
Model number	VR3
Performance table	VR4
Dimensions	VR12
Dimensions (Adapter)	VR25
Installation	VR90

Can be mounted from the reducer side.

VRB series

High precision type

Features	VR34
Model number	VR35
Performance table	VR36
Dimensions	VR42
Dimensions (Adapter)	VR54
Installation	VR90

Can be mounted from the reducer side.

VRL series

General-purpose type

Features	VR62
Model number	VR63
Performance table	VR64
Dimensions	VR70
Dimensions (Adapter)	VR82
Installation	VR90

Can be mounted from the customer's machine side.

Applications

Attachable and applicable to a range of applications and devices

For servo motor

ABLEREDUCER

SHIMPO

VRS Series

High precision

Standard backlash is 3 arc-min, ideal for precision control.

High rigidity & torque

High rigidity & high torque were achived by uncaged needle roller bearings.

High load capacity

Adopting taper roller bearing for the main output shaft to increase radial and axial load.

Adapter-bushing connection

Can be attached to any motor all over the world.

No grease leakage

Perfect solution using high viscosity anti-separation grease.

Maintenance-free

No need to replace the grease for the life of the unit. Can be attached in any position.

VRS series

※1 Mount code

Mount code varies depending on the motor.

Please refer to reducer selection tool or contact us for more information.

Selection tool (English)

(http://www.nidec-shimpo.co.jp/selection/eng/)

VRS-06	60B		※ 1	※ 2	※ 3	※ 4	※ 5	※ 6	※ 7
Frame size	Stage	Ratio	Nominal output torque	Maximum output torque	Emergency stop torque	Nominal input speed	Maximum input speed	Permitted radial load	Permitted axial load
		_	[Nm]	[Nm]	[Nm]	[rpm]	[rpm]	[N]	[N]
		3	18	35	80	3000	6000	1700	2300
		4	27	50	100	3000	6000	1900	2500
		5	27	50	100	3000	6000	2000	2700
	Single	6	27	50	100	3000	6000	2100	2700
	Omgro	7	27	50	100	3000	6000	2200	2700
		8	27	50	100	3000	6000	2300	2700
		9	18	35	80	3000	6000	2400	2700
		10	18	35	80	3000	6000	2400	2700
		15	18	35	80	3000	6000	2800	2700
		16	27	50	100	3000	6000	2800	2700
		20	27	50	100	3000	6000	3000	2700
060B		25	27	50	100	3000	6000	3000	2700
		28	27	50	100	3000	6000	3000	2700
		30	18	35	80	3000	6000	3000	2700
		35	27	50	100	3000	6000	3000	2700
	Double	40	27	50	100	3000	6000	3000	2700
		45	18	35	80	3000	6000	3000	2700
		50	27	50	100	3000	6000	3000	2700
		60	27	50	100	3000	6000	3000	2700
		70	27	50	100	3000	6000	3000	2700
		80	27	50	100	3000	6000	3000	2700
		90	18	35	80	3000	6000	3000	2700
		100	18	35	80	3000	6000	3000	2700
	•		* 8	※ 9	※ 10	•		•	

			≫0	****	%10			
Frame size	Stage	Ratio	Maximum radial load	Maximum axial load	Weight	Moment of inertia $(\leq \phi 8)$	Moment of inertia $(\leqq \phi \ 14)$	Moment of inertia $(\leq \phi 19)$
			[N]	[N]	[kg]	[kgcm ²]	[kgcm ²]	[kgcm ²]
		3	3000	2700		0.15	0.23	0.44
		4	3000	2700		0.10	0.18	0.39
	Single	5	3000	2700	1.6	0.080	0.16	0.37
		6	3000	2700		0.070	0.15	0.36
		7	3000	2700		0.064	0.14	0.35
		8	3000	2700		0.060	0.14	0.35
		9	3000	2700		0.058	0.14	0.35
		10	3000	2700		0.056	0.14	0.34
		15	3000	2700		0.055	0.14	_
		16	3000	2700		0.057	0.14	_
		20	3000	2700		0.054	0.13	_
060B		25	3000	2700		0.053	0.13	_
		28	3000	2700		0.055	0.14	_
		30	3000	2700		0.049	0.13	_
		35	3000	2700		0.053	0.13	_
	Double	40	3000	2700	1.8	0.049	0.13	_
		45	3000	2700		0.053	0.13	_
		50	3000	2700		0.049	0.13	_
		60	3000	2700		0.049	0.13	_
		70	3000	2700		0.049	0.13	_
		80	3000	2700		0.049	0.13	_
		90	3000	2700		0.049	0.13	_
		100	3000	2700		0.049	0.13	_

- \divideontimes 1 With nominal input speed, service life is 20,000 hours.
- X 2 The maximum torque when starting and stopping.
- \divideontimes 3 The maximum torque when it receives shock (up to 1,000 times)
- \divideontimes 4 The maximum average input speed.
- \divideontimes 5 The maximum momentary input speed.
- imes 6 With this load and nominal input speed, service life will be 20,000 hours. (Applied to the output shaft center, at axial load 0)
- $\frak{\%}$ 7 With this load and nominal input speed, service life will be 20,000 hours. (Applied to the output side bearing, at radial load 0)
- $\ensuremath{\ensuremath{\mathbb{X}}}$ 8 The maximum radial load the reducer can accept.
- X 9 The maximum axial load the reducer can accept.
- \divideontimes 10 The weight may vary slightly model to model.

Coaxial shaft VRS series

/RS-07	75B		※ 1	※ 2	※ 3	※ 4	※ 5	※ 6	※ 7
Frame size	Stage	Ratio	Nominal output torque	Maximum output torque	Emergency stop torque	Nominal input speed	Maximum input speed	Permitted radial load	Permitted axial load
			[Nm]	[Nm]	[Nm]	[rpm]	[rpm]	[N]	[N]
		3	50	80	200	3000	6000	2300	3400
		4	75	125	250	3000	6000	2500	3700
		5	75	125	250	3000	6000	2700	3900
	Single	6	75	125	250	3000	6000	2800	3900
	Olligie	7	75	125	250	3000	6000	3000	3900
		8	75	125	250	3000	6000	3100	3900
		9	50	80	200	3000	6000	3200	3900
		10	50	80	200	3000	6000	3300	3900
		15	50	80	200	3000	6000	3700	3900
		16	75	125	250	3000	6000	3800	3900
		20	75	125	250	3000	6000	4000	3900
075B		25	75	125	250	3000	6000	4300	3900
		28	75	125	250	3000	6000	4300	3900
		30	50	80	200	3000	6000	4300	3900
		35	75	125	250	3000	6000	4300	3900
	Double	40	75	125	250	3000	6000	4300	3900
		45	50	80	200	3000	6000	4300	3900
		50	75	125	250	3000	6000	4300	3900
		60	75	125	250	3000	6000	4300	3900
		70	75	125	250	3000	6000	4300	3900
		80	75	125	250	3000	6000	4300	3900
		90	50	80	200	3000	6000	4300	3900
		100	50	80	200	3000	6000	4300	3900
			※ 8	※ 9	※ 10				

			70	/v	/K10				
Frame size	Stage	Ratio	Maximum radial load	Maximum axial load	Weight	Moment of inertia $(\leq \phi 8)$	Moment of inertia $(\leq \phi 14)$	Moment of inertia $(\leq \phi 19)$	Moment of inertia $(\leqq \phi \ 28)$
			[N]	[N]	[kg]	[kgcm ²]	[kgcm ²]	[kgcm ²]	[kgcm ²]
		3	4300	3900		-	0.67	1.1	3.1
		4	4300	3900		-	0.47	0.93	2.9
		5	4300	3900		-	0.38	0.85	2.9
	0: 1	6	4300	3900	3.4	-	0.34	0.81	2.8
	Single	7	4300	3900	3.4	-	0.31	0.78	2.8
		8	4300	3900		-	0.30	0.76	2.8
		9	4300	3900	-	-	0.29	0.75	2.8
		10	4300	3900		_	0.29	0.75	2.8
		15	4300	3900		0.13	0.28	0.72	-
		16	4300	3900		0.14	0.30	0.73	-
		20	4300	3900		0.13	0.28	0.72	-
075B		25	4300	3900		0.12	0.28	0.71	1
		28	4300	3900		0.14	0.29	0.73	1
		30	4300	3900		0.099	0.25	0.70	Ī
		35	4300	3900		0.12	0.27	0.71	1
	Double	40	4300	3900	3.8	0.098	0.25	0.69	Ī
		45	4300	3900		0.12	0.27	0.71	1
		50	4300	3900		0.098	0.25	0.69	ı
		60	4300	3900		0.098	0.25	0.69	1
		70	4300	3900		0.097	0.25	0.69	İ
		80	4300	3900		0.097	0.25	0.69	-
		90	4300	3900		0.097	0.25	0.69	1
		100	4300	3900		0.097	0.25	0.69	ı

- \divideontimes 1 With nominal input speed, service life is 20,000 hours.
- \divideontimes 2 The maximum torque when starting and stopping.
- \divideontimes 3 The maximum torque when it receives shock (up to 1,000 times)
- \divideontimes 4 The maximum average input speed.
- \divideontimes 5 The maximum momentary input speed.
- % 6 With this load and nominal input speed, service life will be 20,000 hours. (Applied to the output shaft center, at axial load 0)
- % 7 With this load and nominal input speed, service life will be 20,000 hours. (Applied to the output side bearing, at radial load 0)
- X 8 The maximum radial load the reducer can accept.
- \divideontimes 9 The maximum axial load the reducer can accept.

VRS-10	00B		※ 1	※ 2	※ 3	※ 4	※ 5	※ 6	※ 7
Frame size	Stage	Ratio	Nominal output torque	Maximum output torque	Emergency stop torque	Nominal input speed	Maximum input speed	Permitted radial load	Permitted axial load
			[Nm]	[Nm]	[Nm]	[rpm]	[rpm]	[N]	[N]
		3	120	225	500	3000	6000	3400	4800
		4	120	330	625	3000	6000	3700	5200
		5	180	330	625	3000	6000	4000	5600
	Single	6	180	330	625	3000	6000	4200	5900
	Olligie	7	180	330	625	3000	6000	4400	6100
		8	180	330	625	3000	6000	4600	6300
		9	120	225	500	3000	6000	4800	6300
		10	120	225	500	3000	6000	4900	6300
		15	120	225	500	3000	6000	5600	6300
		16	180	330	625	3000	6000	5700	6300
		20	180	330	625	3000	6000	6100	6300
100B		25	180	330	625	3000	6000	6500	6300
		28	180	330	625	3000	6000	6700	6300
		30	120	225	500	3000	6000	6900	6300
		35	180	330	625	3000	6000	7000	6300
	Double	40	180	330	625	3000	6000	7000	6300
		45	120	225	500	3000	6000	7000	6300
		50	180	330	625	3000	6000	7000	6300
		60	180	330	625	3000	6000	7000	6300
		70	180	330	625	3000	6000	7000	6300
		80	180	330	625	3000	6000	7000	6300
		90	120	225	500	3000	6000	7000	6300
		100	120	225	500	3000	6000	7000	6300
			※ 8	※ 9	※ 10				

			/o	/	/.(10				
Frame size	Stage	Ratio	Maximum radial load	Maximum axial load	Weight	Moment of inertia $(\leq \phi 14)$	Moment of inertia $(\leq \phi 19)$	Moment of inertia $(\leq \phi 28)$	Moment of inertia $(\leq \phi \ 38)$
			[N]	[N]	[kg]	[kgcm ²]	[kgcm ²]	[kgcm ²]	[kgcm ²]
		3	7000	6300		-	3.2	5.2	13
		4	7000	6300		-	2.0	4.0	12
		5	7000	6300		-	1.5	3.6	11
	C'I	6	7000	6300	8.1	-	1.3	3.3	11
	Single	7	7000	6300	0.1	-	1.1	3.1	11
		8	7000	6300	-	-	1.0	3.0	11
		9	7000	6300		-	0.96	3.0	11
		10	7000	6300		-	0.93	3.0	11
		15	7000	6300		0.42	0.86	2.8	-
		16	7000	6300		0.48	0.91	2.9	_
		20	7000	6300		0.40	0.83	2.8	1
100B		25	7000	6300		0.38	0.82	2.8	-
		28	7000	6300		0.44	0.87	2.8	-
		30	7000	6300		0.29	0.74	2.7	-
		35	7000	6300		0.37	0.81	2.7	-
	Double	40	7000	6300	8.8	0.28	0.73	2.7	1
		45	7000	6300		0.37	0.80	2.7	-
		50	7000	6300		0.28	0.73	2.7	-
		60	7000	6300		0.28	0.73	2.7	ı
		70	7000	6300		0.28	0.73	2.7	1
		80	7000	6300		0.28	0.73	2.7	-
		90	7000	6300		0.27	0.73	2.7	ı
		100	7000	6300		0.27	0.73	2.7	1

- \divideontimes 1 With nominal input speed, service life is 20,000 hours.
- X 2 The maximum torque when starting and stopping.
- \divideontimes 3 The maximum torque when it receives shock (up to 1,000 times)
- \divideontimes 4 The maximum average input speed.
- \divideontimes 5 The maximum momentary input speed.
- imes 6 With this load and nominal input speed, service life will be 20,000 hours. (Applied to the output shaft center, at axial load 0)
- $\frak{\%}$ 7 With this load and nominal input speed, service life will be 20,000 hours. (Applied to the output side bearing, at radial load 0)
- $\ensuremath{\ensuremath{\mathbb{X}}}$ 8 The maximum radial load the reducer can accept.
- X 9 The maximum axial load the reducer can accept.
- \divideontimes 10 The weight may vary slightly model to model.

/RS-14	<i>10B</i>		※ 1	※ 2	※ 3	※ 4	※ 5	※ 6	※ 7
Frame size	Stage	Ratio	Nominal output torque	Maximum output torque	Emergency stop torque	Nominal input speed	Maximum input speed	Permitted radial load	Permitted axial load
		3	240	470	1000	2000	4000	6700	9000
		4	240	700	1250	2000	4000	7400	9000
		5	360	700	1250	2000	4000	7900	9000
	0: 1	6	360	700	1250	2000	4000	8300	9000
	Single	7	360	700	1250	2000	4000	8700	9000
		8	360	700	1250	2000	4000	9100	9000
		9	240	470	1000	2000	4000	9400	9000
		10	240	470	1000	2000	4000	9700	9000
	-	15	240	470	1000	2000	4000	10000	9000
		16	360	700	1250	2000	4000	10000	9000
		20	360	700	1250	2000	4000	10000	9000
140B			25	360	700	1250	2000	4000	10000
		28	360	700	1250	2000	4000	10000	9000
		30	240	470	1000	2000	4000	10000	9000
		35	360	700	1250	2000	4000	10000	9000
	Double	40	360	700	1250	2000	4000	10000	9000
		45	240	470	1000	2000	4000	10000	9000
		50	360	700	1250	2000	4000	10000	9000
		60	360	700	1250	2000	4000	10000	9000
		70	360	700	1250	2000	4000	10000	9000
		80	360	700	1250	2000	4000	10000	9000
		90	240	470	1000	2000	4000	10000	9000
		100	240	470	1000	2000	4000	10000	9000
			<u></u>	※ 9	※ 10				

			7.10	/v	/K10				
Frame size	Stage	Ratio	Maximum radial load	Maximum axial load	Weight	Moment of inertia $(\leq \phi 19)$	Moment of inertia $(\leq \phi 28)$	Moment of inertia $(\leq \phi \ 38)$	Moment of inertia $(\leq \phi 48)$
			[N]	[N]	[kg]	[kgcm ²]	[kgcm ²]	[kgcm ²]	[kgcm ²]
		3	10000	9000		-	12	20	42
		4	10000	9000		-	7.4	15	37
		5	10000	9000		_	5.8	13	36
	0: 1	6	10000	9000	17	-	4.9	13	35
	Single	7	10000	9000	17	-	4.1	12	34
		8	10000	9000		-	3.8	12	34
		9	10000	9000		-	3.6	11	34
		10	10000	9000		-	3.4	11	33
		15	10000	9000		1.3	3.2	11	-
		16	10000	9000		1.5	3.5	11	-
		20	10000	9000		1.2	3.1	11	1
140B		25	10000	9000		1.1	3.1	11	1
		28	10000	9000		1.4	3.3	11	1
		30	10000	9000		0.85	2.8	10	1
		35	10000	9000		1.1	3.1	11	1
	Double	40	10000	9000	19	0.83	2.8	10	ı
		45	10000	9000		1.1	3.0	11	1
		50	10000	9000		0.81	2.8	10	ı
		60	10000	9000		0.81	2.8	10	ı
		70	10000	9000		0.80	2.8	10	1
		80	10000	9000		0.80	2.8	10	-
		90	10000	9000		0.80	2.8	10	1
		100	10000	9000		0.80	2.8	10	ı

- \divideontimes 1 With nominal input speed, service life is 20,000 hours.
- \divideontimes 2 The maximum torque when starting and stopping.
- \divideontimes 3 The maximum torque when it receives shock (up to 1,000 times)
- \divideontimes 4 The maximum average input speed.
- \divideontimes 5 The maximum momentary input speed.
- % 6 With this load and nominal input speed, service life will be 20,000 hours. (Applied to the output shaft center, at axial load 0)
- % 7 With this load and nominal input speed, service life will be 20,000 hours. (Applied to the output side bearing, at radial load 0)
- X 8 The maximum radial load the reducer can accept.
- $\frak{\%}$ 9 The maximum axial load the reducer can accept.

/RS-18	80B		※ 1	※ 2	※ 3	※ 4	※ 5	※ 6	※ 7
Frame size	Stage	Ratio	Nominal output torque	Maximum output torque	Emergency stop torque	Nominal input speed	Maximum input speed	Permitted radial load	Permitted axial load
			[Nm]	[Nm]	[Nm]	[rpm]	[rpm]	[N]	[N]
		3	500	970	2200	1500	3000	12000	16000
		4	750	1400	2750	1500	3000	13000	17000
		5	750	1400	2750	1500	3000	14000	17000
	Single	6	750	1400	2750	1500	3000	15000	17000
	Sirigle	7	750	1400	2750	1500	3000	16000	17000
		8	750	1400	2750	1500	3000	17000	17000
		9	500	970	2200	1500	3000	17000	17000
		10	500	970	2200	1500	3000	18000	17000
		15	500	970	2200	1500	3000	19000	17000
		16	750	1400	2750	1500	3000	19000	17000
		20	750	1400	2750	1500	3000	19000	17000
180B		25	750	1400	2750	1500	3000	19000	17000
		28	750	1400	2750	1500	3000	19000	17000
		30	500	970	2200	1500	3000	19000	17000
		35	750	1400	2750	1500	3000	19000	17000
	Double	40	750	1400	2750	1500	3000	19000	17000
		45	500	970	2200	1500	3000	19000	17000
		50	750	1400	2750	1500	3000	19000	17000
		60	750	1400	2750	1500	3000	19000	17000
		70	750	1400	2750	1500	3000	19000	17000
		80	750	1400	2750	1500	3000	19000	17000
		90	500	970	2200	1500	3000	19000	17000
		100	500	970	2200	1500	3000	19000	17000
				※ 9	※ 10				

			70	/	/.(10											
Frame size	Stage	Ratio	Maximum radial load	Maximum axial load	Weight	Moment of inertia $(\leq \phi 28)$	Moment of inertia $(\leq \phi \ 38)$	Moment of inertia $(\leq \phi 48)$	Moment of inertia $(\leqq \phi \ 65)$							
			[N]	[N]	[kg]	[kgcm ²]	[kgcm ²]	[kgcm ²]	[kgcm ²]							
		3	19000	17000		-	42	64	120							
		4	19000	17000		-	27	49	110							
		5	19000	17000		-	21	43	100							
	C'l.	6	19000	17000	39	-	18	40	100							
	Single	7	19000	17000	39	-	16	38	98							
		8	19000	17000		-	15	37	97							
		9	19000	17000		-	14	36	96							
		10	19000	17000		_	14	36	96							
		15	19000	17000		4.7	12	34	1							
		16	19000	17000		5.4	13	35	-							
		20	19000	17000		4.3	12	34	_							
180B		25	19000	17000		4.2	12	34	_							
		28	19000	17000		4.9	13	35	_							
		30	19000	17000		3.2	11	33	_							
		35	19000	17000		4.1	12	34	-							
	Double	40	19000	17000	39	39	3.2	11	33	_						
		45	19000	17000					4.0	12	34	-				
		50	19000	17000									3.1	11	33	_
		60	19000	17000							3.1	11	33	-		
		70	19000	17000				3.1	11	33	-					
		80	19000	17000					7			3.1	11	33	_	
		90	19000	17000		3.1	11	33	-							
		100	19000	17000		3.1	11	33	_							

- \divideontimes 1 With nominal input speed, service life is 20,000 hours.
- X 2 The maximum torque when starting and stopping.
- \divideontimes 3 The maximum torque when it receives shock (up to 1,000 times)
- \divideontimes 4 The maximum average input speed.
- \divideontimes 5 The maximum momentary input speed.
- imes 6 With this load and nominal input speed, service life will be 20,000 hours. (Applied to the output shaft center, at axial load 0)
- $\frak{\%}$ 7 With this load and nominal input speed, service life will be 20,000 hours. (Applied to the output side bearing, at radial load 0)
- $\ensuremath{\ensuremath{\mathbb{X}}}$ 8 The maximum radial load the reducer can accept.
- X 9 The maximum axial load the reducer can accept.
- \divideontimes 10 The weight may vary slightly model to model.

Coaxial shaft VRS series

/RS-21	'0B		※ 1	※ 2	※ 3	※ 4	※ 5	※ 6	※ 7		
Frame size	Stage	Ratio	Nominal output torque	Maximum output torque	Emergency stop torque	Nominal input speed	Maximum input speed	Permitted radial load	Permitted axial load		
			[Nm]	[Nm]	[Nm]	[rpm]	[rpm]	[N]	[N]		
		3	1000	1600	4000	1000	2000	17000	22000		
		4	1500	2300	5000	1000	2000	18000	22000		
		5	1500	2300	5000	1000	2000	20000	22000		
	Single	6	1500	2300	5000	1000	2000	21000	22000		
	Sirigie	7	1500	2300	5000 1000 2000		2000	22000	22000		
		8	1500	2200	5000	1000	2000	23000	22000		
		9	1000	1900	4000	1000	2000	24000	22000		
		10	1000	1600	4000	1000	2000	24000	22000		
		15	1000	1600	4000	1000	2000	24000	22000		
		16	1500	2300	5000	1000	2000	24000	22000		
		20	1500	2300	5000	1000	2000	24000	22000		
210B		25	1500	2300	5000	1000	2000	24000	22000		
		28	1500	2300	5000	1000	2000	24000	22000		
		30	1000	1600	4000	1000	2000	24000	22000		
		35	1500	2300	5000	1000	2000	24000	22000		
	Double	40	1500	2300	5000	1000	2000	24000	22000		
		45	1000	1300	4000	1000	2000	24000	22000		
		50	1500	2300	5000	1000	2000	24000	22000		
		60	1500	2300	5000	1000	2000	24000	22000		
		70	1500	2300	5000	1000	2000	24000	22000		
		80	1500	1800	5000	1000	2000	24000	22000		
		90	1000	1300	4000	1000	2000	24000	22000		
		100	1000	1200	4000	1000	2000	24000	22000		
	×8 ×9 ×10										

			7.0	7.00	7.(10									
Frame size	Stage	Ratio	Maximum radial load	Maximum axial load	Weight	Moment of inertia $(\leqq \phi \ 38)$	Moment of inertia $(\leq \phi 48)$	Moment of inertia $(\leqq \phi \ 65)$						
			[N]	[N]	[kg]	[kgcm ²]	[kgcm ²]	[kgcm ²]						
		3	24000	22000		-	92	150						
		4	24000	22000		-	63	120						
		5	24000	22000		-	53	110						
	C'arak	6	24000	22000	59	-	47	110						
	Single	7	24000	22000	วิษ	_	43	100						
		8	24000	22000		-	40	100						
		9	24000	22000		_	39	99						
		10	24000	22000		-	38	98						
		15	24000	22000		14	36	_						
		16	24000	22000		16	37	_						
		20	24000	22000		14	36	-						
210B		25	24000	22000		14	35	-						
		28	24000	22000		15	36	_						
		30	24000	22000		12	34	-						
		35	24000	22000		13	35	-						
	Double	40	24000	22000	60	12	33	-						
		45	24000	22000		13	35	-						
		50	24000	22000							12	33	-	
			24000	22000						12	33	-		
		70	24000	22000		12	33	_						
		80	24000	22000								12	33	_
		90	24000	22000		12	33	_						
		100	24000	22000		12	33	_						

- \divideontimes 1 With nominal input speed, service life is 20,000 hours.
- \divideontimes 2 The maximum torque when starting and stopping.
- \divideontimes 3 The maximum torque when it receives shock (up to 1,000 times)
- \divideontimes 4 The maximum average input speed.
- \divideontimes 5 The maximum momentary input speed.
- % 6 With this load and nominal input speed, service life will be 20,000 hours. (Applied to the output shaft center, at axial load 0)
- \divideontimes 7 With this load and nominal input speed, service life will be 20,000 hours. (Applied to the output side bearing, at radial load 0)
- X 8 The maximum radial load the reducer can accept.
- $\frak{\%}$ 9 The maximum axial load the reducer can accept.

Coaxial shaft VRS series

/RS-24	<i>10B</i>		※ 1	※ 2	※ 3	※ 4	※ 5	※ 6	※ 7
Frame size	Stage	Ratio	Nominal output torque	Maximum output torque	Emergency stop torque	Nominal input speed	Maximum input speed	Permitted radial load	Permitted axial load
			[Nm]	[Nm]	[Nm]	[rpm]	[rpm]	[N]	[N]
		3	1600	2500	6000	1000	2000	21000	27000
		4	2400	3700	8000	1000	2000	22000	27000
		5	2400	3700	8000	1000	2000	24000	27000
	Single	6	2400	3700	8000	1000	2000	25000	27000
	Olligie	7	2400	3700	8000	1000	2000	26000	27000
		8	2400	3600	8000	1000	2000	28000	27000
		9	1600	3000	6000	1000	2000	29000	27000
		10	1600	2600	6000	1000	2000	29000	27000
		15	1600	2500	6000	1000	2000	30000	27000
		16	2400	3700	8000	1000	2000	30000	27000
		20	2400	3700	8000	1000	2000	30000	27000
240B		25	2400	3700	8000	1000	2000	30000	27000
		28	2400	3700	8000	1000	2000	30000	27000
		30	1600	2500	6000	1000	2000	30000	27000
		35	2400	3700	8000	1000	2000	30000	27000
	Double	40	2400	3700	8000	1000	2000	30000	27000
		45	1600	2100	6000	1000	2000	30000	27000
		50	2400	3700	8000	1000	2000	30000	27000
		60	2400	3700	8000	1000	2000	30000	27000
		70	2400	3700	8000	1000	2000	30000	27000
		80	2400	2700	8000	1000	2000	30000	27000
		90	1600	2100	6000	1000	2000	30000	27000
		100	1600	1800	6000	1000	2000	30000	27000
			* 8	※ 9	※ 10				

			:X:8	:X:9	※ 10		
Frame size	Stage	Ratio	Maximum radial load	Maximum axial load	Weight	Moment of inertia $(\leq \phi 48)$	Moment of inertia $(\leqq \phi 65)$
			[N]	[N]	[kg]	[kgcm²]	[kgcm ²]
		3	30000	27000		_	220
		4	30000	27000		ı	160
		5	30000	27000		ı	130
	Cinala	6	30000	27000	85	I	120
	Single	7	30000	27000	00	ı	110
		8	30000	27000		ı	110
		9	30000	27000		ı	110
		10	30000	27000		ı	100
		15	30000	27000		40	_
		16	30000	27000		43	_
		20	30000	27000		39	_
240B		25	30000	27000		39	_
		28	30000	27000		41	_
		30	30000	27000		35	_
		35	30000	27000		38	_
	Double	40	30000	27000	89	35	_
		45	30000	27000		38	_
		50	30000	27000		35	_
		60	30000	27000		35	_
		70	30000	27000		34	_
		80	30000	27000		34	_
		90	30000	27000		34	_
		100	30000	27000		34	_

- \divideontimes 1 With nominal input speed, service life is 20,000 hours.
- X 2 The maximum torque when starting and stopping.
- \divideontimes 3 The maximum torque when it receives shock (up to 1,000 times)
- \divideontimes 4 The maximum average input speed.
- \divideontimes 5 The maximum momentary input speed.
- imes 6 With this load and nominal input speed, service life will be 20,000 hours. (Applied to the output shaft center, at axial load 0)
- $\frak{\%}$ 7 With this load and nominal input speed, service life will be 20,000 hours. (Applied to the output side bearing, at radial load 0)
- $\ensuremath{\ensuremath{\mathbb{X}}}$ 8 The maximum radial load the reducer can accept.
- X 9 The maximum axial load the reducer can accept.
- \divideontimes 10 The weight may vary slightly model to model.

MEMO			

Coaxial shaft VRS series

VRS-060B 1stage

- \boxtimes 1 Length will vary depending on motor.
- X2 Bushing will be inserted to adapt to motor shaft.

Dimensions

VRS-060B 2stage

- \divideontimes 1 Length will vary depending on motor.
- X2 Bushing will be inserted to adapt to motor shaft.

Coaxial shaft

VRS-075B 1stage

- X1 Length will vary depending on motor.
- X2 Bushing will be inserted to adapt to motor shaft.

VRS-075B 2stage

- $\ensuremath{\ensuremath{\mathbb{X}}}$ 1 Length will vary depending on motor.
- $\ensuremath{\cancel{\times}}\xspace 2$ Bushing will be inserted to adapt to motor shaft.

VRS-100B 1stage

- X1 Length will vary depending on motor.
- X2 Bushing will be inserted to adapt to motor shaft.

VRS-100B 2stage

- $\ensuremath{\ensuremath{\mathbb{X}}}$ 1 Length will vary depending on motor.
- $\ensuremath{\cancel{\times}}\xspace 2$ Bushing will be inserted to adapt to motor shaft.

Coaxial shaft VRS series

VRS-140B 1stage

- X1 Length will vary depending on motor.
- X2 Bushing will be inserted to adapt to motor shaft.

VRS-140B 2stage

- \boxtimes 1 Length will vary depending on motor.
- $\ensuremath{\cancel{\times}}\xspace 2$ Bushing will be inserted to adapt to motor shaft.

VRS-180B 1stage

- X1 Length will vary depending on motor.
- X2 Bushing will be inserted to adapt to motor shaft.

20

VRS-180B 2stage

- $\ensuremath{\ensuremath{\mathbb{X}}}$ 1 Length will vary depending on motor.
- $\ensuremath{\cancel{\times}}\xspace 2$ Bushing will be inserted to adapt to motor shaft.

Coaxial shaft VRS series

VRS-210B 1stage

- X1 Length will vary depending on motor.

Dimensions

VRS-210B 2stage

- X 1 Length will vary depending on motor.
- ※2 Bushing will be inserted to adapt to motor shaft.

Coaxial shaft VRS series

VRS-240B 1stage

VRS-240B 2stage

- X1 Length will vary depending on motor.

Model number	**: Adapter code			Single					Double		
Model number	**: Adapter code	L1	L2	L3	L4	L5	L1	L2	L3	L4	L5
	AA·AC·AD·AF·AG	132	84	□52	15.5	32	151	103	□52	15.5	32
VRS-060B-□-□-8**	AB•AE•AH•AJ•AK	137	89	□52	20.5	37	156	108	□52	20.5	37
(, , , , , , , , ,)	BA•BB•BD•BE	132	84	□60	15.5	32	151	103	□60	15.5	32
Input shaft bore $\leq \phi$ 8	BC•BF	137	89	□60	20.5	37	156	108	□60	20.5	37
	CA	137	89	□70	20.5	37	156	108	□70	20.5	37
	BA·BB·BD·BE·BF·BG·BJ·BK	135	87	□65	16.5	35	156	108	□65	16.5	35
	BC•BH•BM	140	92	□65	21.5	40	161	113	□65	21.5	40
	BL	145	97	□65	26.5	45	166	118	□65	26.5	45
	CA	135	87	□70	16.5	35	156	108	□70	16.5	35
VRS-060B-□-□-14**	СВ	140	92	□70	21.5	40	161	113	□70	21.5	40
	DA · DB · DC · DD · DF · DH	135	87	□80	16.5	35	156	108	□80	16.5	35
Input shaft bore $\leq \phi$ 14	DE	140	92	□80	21.5	40	161	113	□80	21.5	40
9	DG	145	97	□80	26.5	45	166	118	□80	26.5	45
	EA-EB-EC	135	87	□90	16.5	35	156	108	□90	16.5	35
	ED	145	97	□90	26.5	45	166	118	□90	26.5	45
	FA	135	87	□100	16.5	35	156	108	□100	16.5	35
	GA	135	87	□115	16.5	35	156	108	□115	16.5	35
	DA-DB-DC	150	102	□80	25	50					
	DD	160	112	□80	35	60					
	DE	155	107	□80	30	55					
	EA	155	107	□90	30	55					
VRS-060B-□-□-19**	EB	150	102	□90	25	50					
VK3-000B-□-□-19**	EC	160	112	□90	35	60					
Input shaft bore $\leq \phi$ 19	FA	150	102	□100	25	50					
(FB	160	112	□100	35	60					
	GA•GC	155	107	□115	30	55					
	GB•GD	150	102	□115	25	50					
	HA	150	102	□130	25	50					
	НВ	165	117	□130	40	65					
	HC•HD•HE	155	107	□130	30	55					

 $[\]mbox{\ensuremath{\%}}\mbox{1}$ Single reduction : 1/3 $\mbox{\ensuremath{\sim}}\mbox{1/10},$ Double reduction : 1/15 $\mbox{\ensuremath{\sim}}\mbox{1/100}$

^{※ 2} Bushing will be inserted to adapt to motor shaft.

Model number	**: Adapter code			Single					Double		
Widder Hulliber	TT. Adapter Gode	L1	L2	L3	L4	L5	L1	L2	L3	L4	L5
	AA-AC-AD-AF-AG						181.5	125.5	□52	15.5	32
VRS-075B-□-□-8**	AB•AE•AH•AJ•AK						186.5	130.5	□52	20.5	37
(BA•BB•BD•BE						181.5	125.5	□60	15.5	32
Input shaft bore $\leq \phi$ 8	BC•BF						186.5	130.5	□60	20.5	37
	CA						186.5	130.5	□70	20.5	37
	BA·BB·BD·BE·BF·BG·BJ·BK	164.5	108.5	□65	16.5	35	186.5	130.5	□65	16.5	35
	BC-BH-BM	169.5	113.5	□65	21.5	40	191.5	135.5	□65	21.5	40
	BL	174.5	118.5	□65	26.5	45	196.5	140.5	□65	26.5	45
	CA	164.5	108.5	□70	16.5	35	186.5	130.5	□70	16.5	35
VRS-075B-□-□-14**	СВ	169.5	113.5	□70	21.5	40	191.5	135.5	□70	21.5	40
()	DA · DB · DC · DD · DF · DH	164.5	108.5	□80	16.5	35	186.5	130.5	□80	16.5	35
Input shaft bore $\leq \phi$ 14	DE	169.5	113.5	□80	21.5	40	191.5	135.5	□80	21.5	40
	DG	174.5	118.5	□80	26.5	45	196.5	140.5	□80	26.5	45
	EA-EB-EC	164.5	108.5	□90	16.5	35	186.5	130.5	□90	16.5	35
	ED	174.5	118.5	□90	26.5	45	196.5	140.5	□90	26.5	45
	FA	164.5	108.5	□100	16.5	35	186.5	130.5	□100	16.5	35
	GA	164.5	108.5	□115	16.5	35	186.5	130.5	□115	16.5	35
	DA-DB-DC	174.5	118.5	□80	25	50	196.5	140.5	□80	25	50
	DD	184.5	128.5	□80	35	60	206.5	150.5	□80	35	60
	DE	179.5	123.5	□80	30	55	201.5	145.5	□80	30	55
	EA	179.5	123.5	□90	30	55	201.5	145.5	□90	30	55
VD0 035D D D 1011	EB	174.5	118.5	□90	25	50	196.5	140.5	□90	25	50
VRS-075B-□-□-19**	EC	184.5	128.5	□90	35	60	206.5	150.5	□90	35	60
Input shaft bore $\leq \phi$ 19	FA	174.5	118.5	□100	25	50	196.5	140.5	□100	25	50
Input share bore \$ 10)	FB	184.5	128.5	□100	35	60	206.5	150.5	□100	35	60
	GA•GC	179.5	123.5	□115	30	55	201.5	145.5	□115	30	55
	GB•GD	174.5	118.5	□115	25	50	196.5	140.5	□115	25	50
	HA	174.5	118.5	□130	25	50	196.5	140.5	□130	25	50
	НВ	189.5	133.5	□130	40	65	211.5	155.5	□130	40	65
	HC·HD·HE	179.5	123.5	□130	30	55	201.5	145.5	□130	30	55
	FA•FB•FC	191.5	135.5	□100	35	67					
	GA-GB-GC-GD-GE-GF-GG	191.5	135.5	□115	35	67					
	HA•HC•HD	191.5	135.5	□130	35	67					
VRS-075B-□-□-28**	НВ	201.5	145.5	□130	45	77					
	JA•JB•JC	191.5	135.5	□150	35	67					
Input shaft bore $\leq \phi$ 28	KA•KB	191.5	135.5	□180	35	67					
	KD	201.5	145.5	□180	45	77					
	LA	191.5	135.5	□200	35	67					
	MA	191.5	135.5	□220	35	67					

 $[\]mbox{\ensuremath{\mbox{\%}}}\mbox{\ensuremath{1}}$ Single reduction : 1/13 $\mbox{\ensuremath{\sim}}\mbox{\ensuremath{1/10}}$, Double reduction : 1/15 $\mbox{\ensuremath{\sim}}\mbox{\ensuremath{1/100}}$

 $[\]divideontimes$ 2 Bushing will be inserted to adapt to motor shaft.

Model number	**: Adapter code			Single					Double		
wodel number	**: Adapter code	L1	L2	L3	L4	L5	L1	L2	L3	L4	L5
	BA·BB·BD·BE·BF·BG·BJ·BK						231	143	□65	16.5	35
	BC-BH-BM						236	148	□65	21.5	40
	BL						241	153	□65	26.5	45
	CA						231	143	□70	16.5	35
VRS-100B-□-□-14**	СВ						236	148	□70	21.5	40
(DA · DB · DC · DD · DF · DH						231	143	□80	16.5	35
Input shaft bore $\leq \phi$ 14	DE						236	148	□80	21.5	40
	DG						241	153	□80	26.5	45
	EA-EB-EC						231	143	□90	16.5	35
	ED						241	153	□90	26.5	45
	FA						231	143	□100	16.5	35
	GA						231	143	□115	16.5	35
	DA-DB-DC	213.5	125.5	□80	25	50	241	153	□80	25	50
	DD	223.5	135.5	□80	35	60	251	163	□80	35	60
	DE	218.5	130.5	□80	30	55	246	158	□80	30	55
	EA	218.5	130.5	□90	30	55	246	158	□90	30	55
VDC 100D D D 1000	EB	213.5	125.5	□90	25	50	241	153	□90	25	50
VRS-100B-□-□-19**	EC	223.5	135.5	□90	35	60	251	163	□90	35	60
Input shaft bore $\leq \phi$ 19	FA	213.5	125.5	□100	25	50	241	153	□100	25	50
()	FB	223.5	135.5	□100	35	60	251	163	□100	35	60
	GA•GC	218.5	130.5	□115	30	55	246	158	□115	30	55
	GB•GD	213.5	125.5	□115	25	50	241	153	□115	25	50
	HA	213.5	125.5	□130	25	50	241	153	□130	25	50
	НВ	228.5	140.5	□130	40	65	256	168	□130	40	65
	HC•HD•HE	218.5	130.5	□130	30	55	246	158	□130	30	55
	FA•FB•FC	230.5	142.5	□100	35	67	258	170	□100	35	67
	GA·GB·GC·GD·GE·GF·GG	230.5	142.5	□115	35	67	258	170	□115	35	67
VRS-100B-□-□-28**	HA-HC-HD	230.5	142.5	□130	35	67	258	170	□130	35	67
VK3-100B-LI-LI-20**	HB	240.5	152.5	□130	45	77	268	180	□130	45	77
Input shaft bore $\leq \phi$ 28	JA•JB•JC	230.5	142.5	□150	35	67	258	170	□150	35	67
=	KA•KB	230.5	142.5	□180	35	67	258	170	□180	35	67
	KD	240.5	152.5	□180	45	77	268	180	□180	45	77
	LA	230.5	142.5	□200	35	67	258	170	□200	35	67
	MA	230.5	142.5	□220	35	67	258	170	□220	35	67
	HA	251.5	163.5	□130	45	82					
	НВ	246.5	158.5	□130	40	77					
VRS-100B-□-□-38**	JA	251.5	163.5	□150	45	82					
VI/O 100D □ □ 30**	KA•KB•KC	251.5	163.5	□180	45	82					
Input shaft bore $\leq \phi$ 38	LA	251.5	163.5	□200	45	82					
	LB	261.5	173.5	□200	55	92					
	MA•MB	251.5	163.5	□220	45	82					
	NA	251.5	163.5	□250	45	82					

 $[\]mbox{\ensuremath{\%}}\mbox{\ensuremath{1}}$ Single reduction : 1/15 $\mbox{\ensuremath{\sim}}\mbox{\ensuremath{1/10}}$ 1/100

 $[\]frak{\%}\,2$ Bushing will be inserted to adapt to motor shaft.

Coaxial shaft VRS series

Model number	**:Adapter code	Single					Double					
Woder number	** . Adapter Code	L1	L2	L3	L4	L5	L1	L2	L3	L4	L5	
	DA-DB-DC						291.5	179.5	□80	25	50	
	DD						301.5	189.5	□80	35	60	
	DE						296.5	184.5	□80	30	55	
	EA						296.5	184.5	□90	30	55	
V/D0 140D [EB						291.5	179.5	□90	25	50	
VRS-140B-□-□-19**	EC						301.5	189.5	□90	35	60	
Input shaft bore $\leq \phi$ 19	FA						291.5	179.5	□100	25	50	
	FB						301.5	189.5	□100	35	60	
	GA•GC						296.5	184.5	□115	30	55	
	GB•GD						291.5	179.5	□115	25	50	
	HA						291.5	179.5	□130	25	50	
	HB						306.5	194.5	□130	40	65	
	HC•HD•HE						296.5	184.5	□130	30	55	
	FA•FB•FC	274	162	□100	35	67	308.5	196.5	□100	35	67	
	GA-GB-GC-GD-GE-GF-GG	274	162	□115	35	67	308.5	196.5	□115	35	67	
	HA•HC•HD	274	162	□130	35	67	308.5	196.5	□130	35	67	
VRS-140B-□-□-28**	НВ	284	172	□130	45	77	318.5	206.5	□130	45	77	
()	JA•JB•JC	274	162	□150	35	67	308.5	196.5	□150	35	67	
Input shaft bore ≦ ϕ 28	KA•KB	274	162	□180	35	67	308.5	196.5	□180	35	67	
	KD	284	172	□180	45	77	318.5	206.5	□180	45	77	
	LA	274	162	□200	35	67	308.5	196.5	□200	35	67	
	MA	274	162	□220	35	67	308.5	196.5	□220	35	67	
	HA	289	177	□130	45	82	323.5	211.5	□130	45	82	
	HB	284	172	□130	40	77	318.5	206.5	□130	40	77	
VRS-140B-□-□-38**	JA	289	177	□150	45	82	323.5	211.5	□150	45	82	
VR5-140B-∐-∐-38**	KA•KB•KC	289	177	□180	45	82	323.5	211.5	□180	45	82	
Input shaft bore $\leq \phi$ 38	LA	289	177	□200	45	82	323.5	211.5	□200	45	82	
	LB	299	187	□200	55	92	333.5	221.5	□200	55	92	
	MA·MB	289	177	□220	45	82	323.5	211.5	□220	45	82	
	NA	289	177	□250	45	82	323.5	211.5	□250	45	82	
	KB•KC	310	198	□180	55	98						
	KA	330	218	□180	75	118						
VRS-140B-□-□-48**	LA	310	198	□200	55	98						
(, , , , ,)	MA	310	198	□220	55	98						
Input shaft bore≦ ϕ 48	MB	330	218	□220	75	118						
	NA	330	218	□250	75	118						
	PA	330	218	□280	75	118						

 $[\]frac{1}{2}$ 1 Single reduction : $\frac{1}{3} \sim \frac{1}{10}$, Double reduction : $\frac{1}{15} \sim \frac{1}{100}$

 $[\]ensuremath{\ensuremath{\,\times}}$ 2 Bushing will be inserted to adapt to motor shaft.

Model number	**: Adapter code			Single					Double		
Woder Hamber	Adapter code	L1	L2	L3	L4	L5	L1	L2	L3	L4	L5
	FA•FB•FC						345	233	□100	35	67
	GA-GB-GC-GD-GE-GF-GG						345	233	□115	35	67
	HA•HC•HD						345	233	□130	35	67
VRS-180B-□-□-28**	НВ						355	243	□130	45	77
(, , , , , , , , , , ,)	JA•JB•JC						345	233	□150	35	67
Input shaft bore $\leq \phi$ 28	KA•KB						345	233	□180	35	67
	KD						355	243	□180	45	77
	LA						345	233	□200	35	67
	MA						345	233	□220	35	67
	HA	315.5	203.5	□130	45	82	360	248	□130	45	82
	HB	310.5	198.5	□130	40	77	355	243	□130	40	77
VRS-180B-□-□-38**	JA	315.5	203.5	□150	45	82	360	248	□150	45	82
VII.3 100B 🔲 🗎 30444	KA•KB•KC	315.5	203.5	□180	45	82	360	248	□180	45	82
Input shaft bore $\leq \phi$ 38	LA	315.5	203.5	□200	45	82	360	248	□200	45	82
(LB	325.5	213.5	□200	55	92	370	258	□200	55	92
	MA•MB	315.5	203.5	□220	45	82	360	248	□220	45	82
	NA	315.5	203.5	□250	45	82	360	248	□250	45	82
	KB•KC	331.5	219.5	□180	55	98	376	264	□180	55	98
	KA	351.5	239.5	□180	75	118	396	284	□180	75	118
VRS-180B-□-□-48**	LA	331.5	219.5	□200	55	98	376	264	□200	55	98
(100	MA	331.5	219.5	□220	55	98	376	264	□220	55	98
Input shaft bore $\leq \phi$ 48	MB	351.5	239.5	□220	75	118	396	284	□220	75	118
·	NA	351.5	239.5	□250	75	118	396	284	□250	75	118
	PA	351.5	239.5	□280	75	118	396	284	□280	75	118
	MA·MB·MC·MD	363	251	□220	80	122					
VRS-180B-□-□-65**	NA	363	251	□250	80	122					
Input shaft bore $\leq \phi$ 65	PA	383	271	□280	100	142					
Input shart bore ≤ \$\phi\$ 65	PB	393	281	□280	110	152					
	QA	383	271	□320	100	142					

 $[\]mbox{\ensuremath{\%}}\mbox{\ensuremath{1}}\mbox{\ensuremath{Single}}\mbox{ reduction}: 1/3 \mbox{\ensuremath{\sim}}\mbox{\ensuremath{1/10}}\mbox{\ensuremath{Double}}\mbox{ reduction}: 1/15 \mbox{\ensuremath{\sim}}\mbox{\ensuremath{1/100}}\mbox{\ensuremath{0}}\mbox{$

 $[\]ensuremath{\ensuremath{\,\times}}$ 2 Bushing will be inserted to adapt to motor shaft.

Model number	**:Adapter code			Single					Double		
Model Hamber	Adapter code	L1	L2	L3	L4	L5	L1	L2	L3	L4	L5
	HA						413	270	□130	45	82
	НВ						408	265	□130	40	77
VRS-210B-□-□-38**	JA						413	270	□150	45	82
VR3-210B-LI-LI-30**	KA•KB•KC						413	270	□180	45	82
Input shaft bore ≤ φ 38	LA						413	270	□200	45	82
Input shart bore ≡ \$\psi_36\$	LB						423	280	□200	55	92
	MA•MB						413	270	□220	45	82
	NA						413	270	□250	45	82
	KB•KC	394	251	□180	55	98	429	286	□180	55	98
	KA	414	271	□180	75	118	449	306	□180	75	118
VRS-210B-□-□-48**	LA	394	251	□200	55	98	429	286	□200	55	98
(MA	394	251	□220	55	98	429	286	□220	55	98
Input shaft bore ≤ ϕ 48	MB	414	271	□220	75	118	449	306	□220	75	118
	NA	414	271	□250	75	118	449	306	□250	75	118
	PA	414	271	□280	75	118	449	306	□280	75	118
	MA·MB·MC·MD	418	275	□220	80	122					
VRS-210B-□-□-65**	NA	418	275	□250	80	122					
	PA	438	295	□280	100	142					
Input shaft bore $\leq \phi$ 65	PB	448	305	□280	110	152					
	QA	438	295	□320	100	142					

 $[\]frak{\%}$ 1 Single reduction : 1/3 $\frak{\sim}$ 1/10, Double reduction : 1/15 $\frak{\sim}$ 1/100

 $[\]frak{\%}\,2$ Bushing will be inserted to adapt to motor shaft.

Model number	**: Adapter code	Single				Double					
Model Hulliber		L1	L2	L3	L4	L5	L1	L2	L3	L4	L5
VRS-240B-□-□-48** $ \left(\text{Input shaft bore} \leq \phi \text{ 48} \right) $	KB•KC						496	326	□180	55	98
	KA						516	346	□180	75	118
	LA						496	326	□200	55	98
	MA						496	326	□220	55	98
	MB						516	346	□220	75	118
	NA						516	346	□250	75	118
	PA						516	346	□280	75	118
VRS-240B-□-□-65**	MA·MB·MC·MD	465.5	295.5	□220	80	122					
	NA	465.5	295.5	□250	80	122					
	PA	485.5	315.5	□280	100	142					
	PB	495.5	325.5	□280	110	152					
	QA	485.5	315.5	□320	100	142					

 $[\]mbox{\ensuremath{\%}}\mbox{\ensuremath{1}}$ Single reduction : 1/15 $\mbox{\ensuremath{\sim}}\mbox{\ensuremath{1/10}}$ 1/100

 $[\]ensuremath{\cancel{\times}}\xspace 2$ Bushing will be inserted to adapt to motor shaft.

MEMO	

SHIMPO

For servo motor

ABLEREDUCER

VRBSeries

Quiet operation

Helical gears contribute to reduce vibration and noise.

High precision

Standard backlash is 3 arc-min, ideal for precision control.

High rigidity & torque

High rigidity & high torque were achived by uncaged needle roller bearings.

Adapter-bushing connection

Can be attached to any motor all over the world.

No grease leakage

Perfect solution using high viscosity anti-separation grease.

Maintenance-free

No need to replace the grease for the life of the unit. Can be attached in any position.

VRB series

※1 Mount code

Mount code varies depending on the motor.

Please refer to reducer selection tool or contact us for more information.

Selection tool (English)

(http://www.nidec-shimpo.co.jp/selection/eng/)

Performance table

VRB-06	<i>60</i>		※ 1	※ 2	※ 3	※ 4	※ 5	※ 6	※ 7
Frame size	Stage	Ratio	Nominal output torque	Maximum output torque	Emergency stop torque	Nominal input speed	Maximum input speed	Permitted radial load	Permitted axial load
			[Nm]	[Nm]	[Nm]	[rpm]	[rpm]	[N]	[N]
		3	18	35	80	3000	6000	430	310
		4	27	50	100	3000	6000	470	360
		5	27	50	100	3000	6000	510	390
	Single	6	27	50	100	3000	6000	540	430
	Olligie	7	27	50	100	3000	6000	570	460
		8	27	50	100	3000	6000	600	480
		9	18	35	80	3000	6000	620	510
		10	18	35	80	3000	6000	640	530
		15	18	35	80	3000	6000	740	630
		16	27	50	100	3000	6000	750	650
		20	27	50	100	3000	6000	810	720
060		25	27	50	100	3000	6000	870	790
		28	27	50	100	3000	6000	910	830
		30	18	35	80	3000	6000	930	860
		35	27	50	100	3000	6000	980	920
	Double	40	27	50	100	3000	6000	1000	970
		45	18	35	80	3000	6000	1100	1000
		50	27	50	100	3000	6000	1100	1100
		60	27	50	100	3000	6000	1200	1100
		70	27	50	100	3000	6000	1200	1100
		80	27	50	100	3000	6000	1200	1100
		90	18	35	80	3000	6000	1200	1100
		100	18	35	80	3000	6000	1200	1100
	•			※ 9	※ 10	•			

			/.\U	70	/K10			
Frame size	Stage	Ratio	Maximum radial load	Maximum axial load	Weight	Moment of inertia $(\leq \phi 8)$	Moment of inertia $(\leq \phi 14)$	Moment of inertia $(\leq \phi \ 19)$
			[N]	[N]	[kg]	[kgcm ²]	[kgcm ²]	[kgcm ²]
		3	1200	1100		0.14	0.22	0.43
		4	1200	1100		0.095	0.17	0.38
		5	1200	1100		0.077	0.16	0.36
	C' l .	6	1200	1100	1.4	0.068	0.15	0.36
	Single	7	1200	1100	1.4	0.062	0.14	0.35
		8	1200	1100		0.059	0.14	0.35
		9	1200	1100		0.057	0.14	0.34
		10	1200	1100		0.056	0.14	0.34
		15	1200	1100		0.055	0.14	_
		16	1200	1100		0.057	0.14	_
		20	1200	1100		0.054	0.13	_
060		25	1200	1100		0.053	0.13	_
		28	1200	1100		0.055	0.14	_
		30	1200	1100		0.049	0.13	_
		35	1200	1100		0.053	0.13	_
	Double	40	1200	1100	1.6	0.049	0.13	_
		45	1200	1100		0.053	0.13	_
		50	1200	1100		0.049	0.13	_
		60	1200	1100		0.049	0.13	_
	-	70	1200	1100		0.049	0.13	_
		80	1200	1100		0.049	0.13	_
		90	1200	1100		0.049	0.13	_
		100	1200	1100		0.049	0.13	_

- X 1 With nominal input speed, service life is 20,000 hours.
- \divideontimes 2 The maximum torque when starting and stopping.
- $\mbox{\%}$ 3 The maximum torque when it receives shock (up to 1,000 times)
- X 4 The maximum average input speed.
- 💥 5 The maximum momentary input speed.

(Applied to the output shaft center, at axial load 0)

- $\ensuremath{\cancel{\times}}$ 7 With this load and nominal input speed, service life will be 20,000 hours. (Applied to the output side bearing, at radial load 0)
- $\ensuremath{\mathbb{X}}$ 8 The maximum radial load the reducer can accept.
- X 9 The maximum axial load the reducer can accept.
- ¾ 10 The weight may vary slightly model to model.

Coaxial shaft VRB series

/RB-090)		※ 1	※ 2	※ 3	※ 4	※ 5	※ 6	※ 7
Frame size	Stage		Nominal output torque	Maximum output torque	Emergency stop torque	Nominal input speed	Maximum input speed	Permitted radial load	Permitted axial load
			[Nm]	[Nm]	[Nm]	[rpm]	[rpm]	[N]	[N]
		3	50	80	200	3000	6000	810	930
		4	75	125	250	3000	6000	890	1100
		5	75	125	250	3000	6000	960	1200
	C:	6	75	125	250	3000	6000	1000	1300
	Single	7	75	125	250	3000	6000	1100	1300
		8	75	125	250	3000	6000	1100	1400
		9	50	80	200	3000	6000	1200	1500
		10	50	80	200	3000	6000	1200	1600
		15	50	80	200	3000	6000	1400	1900
	16	16	75	125	250	3000	6000	1400	1900
		20	75	125	250	3000	6000	1500	2100
090		25	75	125	250	3000	6000	1600	2200
		28	75	125	250	3000	6000	1700	2200
		30	50	80	200	3000	6000	1700	2200
		35	75	125	250	3000	6000	1800	2200
I	Double	40	75	125	250	3000	6000	1900	2200
		45	50	80	200	3000	6000	2000	2200
		50	75	125	250	3000	6000	2100	2200
		60	75	125	250	3000	6000	2200	2200
		70	75	125	250	3000	6000	2300	2200
		80	75	125	250	3000	6000	2400	2200
		90	50	80	200	3000	6000	2400	2200
		100	50	80	200	3000	6000	2400	2200
· ·			×8	※ 9	※ 10				

Frame size	Stage	Ratio	Maximum radial load	Maximum axial load	Weight	Moment of inertia $(\leq \phi 8)$	Moment of inertia $(\leq \phi 14)$	Moment of inertia $(\leq \phi 19)$	Moment of inertia $(\leq \phi 28)$
			[N]	[N]	[kg]	[kgcm ²]	[kgcm ²]	[kgcm ²]	[kgcm ²]
		3	2400	2200		-	0.72	1.2	3.2
		4	2400	2200		ı	0.49	0.95	3.0
		5	2400	2200		-	0.40	0.86	2.9
	Cin ala	6	2400	2200	3.7	ı	0.36	0.82	2.8
	Single	7	2400	2200	5.7	ı	0.32	0.79	2.8
		8	2400	2200		ı	0.31	0.77	2.8
		9	2400	2200		1	0.29	0.76	2.8
		10	2400	2200		-	0.29	0.75	2.8
		15	2400	2200		0.13	0.28	0.72	-
		16	2400	2200		0.15	0.30	0.74	-
		20	2400	2200		0.13	0.28	0.72	-
090		25	2400	2200		0.12	0.28	0.71	_
		28	2400	2200		0.14	0.29	0.73	_
		30	2400	2200		0.10	0.25	0.70	_
		35	2400	2200		0.12	0.27	0.71	-
	Double	40	2400	2200	4.2	0.099	0.25	0.70	_
		45	2400	2200		0.12	0.27	0.71	-
		50	2400	2200		0.098	0.25	0.69	-
		60	2400	2200		0.098	0.25	0.69	_
		70	2400	2200		0.097	0.25	0.69	_
		80	2400	2200		0.097	0.25	0.69	_
		90	2400	2200		0.097	0.25	0.69	_
		100	2400	2200		0.097	0.25	0.69	_

- $\frak{\%}$ 1 With nominal input speed, service life is 20,000 hours.
- \divideontimes 2 The maximum torque when starting and stopping.
- \divideontimes 3 The maximum torque when it receives shock (up to 1,000 times)
- $\ensuremath{\,\times\,}$ 5 The maximum momentary input speed.
- % 6 With this load and nominal input speed, service life will be 20,000 hours. (Applied to the output shaft center, at axial load 0)
- $\mbox{\%}$ 7 With this load and nominal input speed, service life will be 20,000 hours. (Applied to the output side bearing, at radial load 0)
- $\frak{\%}$ 8 The maximum radial load the reducer can accept.
- \divideontimes 9 The maximum axial load the reducer can accept.
- \divideontimes 10 The weight may vary slightly model to model.

Performance table

VRB-17	15		※ 1	※ 2	※ 3	※ 4	※ 5	※ 6	※ 7		
Frame size	Stage		Nominal output torque	Maximum output torque	Emergency stop torque	Nominal input speed	Maximum input speed	Permitted radial load	Permitted axial load		
		_	[Nm]	[Nm]	[Nm]	[rpm]	[rpm]	[N]	[N]		
		3	120	225	500	3000	6000	1300	1500		
		4	120	330	625	3000	6000	1500	1700		
		5	180	330	625	3000	6000	1600	1900		
	Single	6	180	330	625	3000	6000	1700	2000		
	Olligio	7	180	330	625	3000	6000	1800	2100		
		8	180	330	625	3000	6000	1900	2300		
		9	120	225	500	3000	6000	1900	2400		
		10	120	225	500	3000	6000	2000	2500		
		15	120	225	500	3000	6000	2300	3000		
		16	180	330	625	3000	6000	2300	3100		
		20	180	330	625	3000	6000	2500	3400		
115		25	180	330	625	3000	6000	2700	3700		
		28	180	330	625	3000	6000	2800	3900		
		30	120	225	500	3000	6000	2900	3900		
		35	180	330	625	3000	6000	3000	3900		
	Double	40	180	330	625	3000	6000	3200	3900		
		45	120	225	500	3000	6000	3300	3900		
		50	180	330	625	3000	6000	3400	3900		
		60	180	330	625	3000	6000	3600	3900		
		70	180	330	625	3000	6000	3800	3900		
		80	180	330	625	3000	6000	4000	3900		
		90	120	225	500	3000	6000	4200	3900		
		100	120	225	500	3000	6000	4300	3900		
	<u> </u>										

			% 0	 ₩9	×10				
Frame Stage		Ratio	Maximum radial load	Maximum axial load	Weight	Moment of inertia $(\leq \phi \ 14)$	Moment of inertia $(\leq \phi 19)$	Moment of inertia $(\leq \phi 28)$	Moment of inertia $(\leq \phi 38)$
			[N]	[N]	[kg]	[kgcm ²]	[kgcm ²]	[kgcm ²]	[kgcm ²]
		3	4300	3900		-	3.3	5.3	13
		4	4300	3900		_	2.0	4.1	12
		5	4300	3900		_	1.6	3.6	11
	C'a ala	6	4300	3900	8	_	1.3	3.3	11
	Single	7	4300	3900	0	_	1.1	3.2	11
		8	4300	3900		_	1.0	3.1	11
		9	4300	3900		_	0.98	3.0	11
		10	4300	3900		_	0.95	3.0	11
		15	4300	3900		0.43	0.86	2.8	-
		16	4300	3900		0.48	0.92	2.9	_
		20	4300	3900		0.40	0.83	2.8	-
115		25	4300	3900		0.38	0.82	2.8	_
		28	4300	3900		0.44	0.88	2.8	-
		30	4300	3900		0.29	0.74	2.7	-
		35	4300	3900		0.37	0.81	2.7	_
	Double	40	4300	3900	8.9	0.28	0.73	2.7	-
		45	4300	3900		0.37	0.80	2.7	_
		50	4300	3900		0.28	0.73	2.7	-
		60	4300	3900		0.28	0.73	2.7	_
		70	4300	3900		0.28	0.73	2.7	-
		80	4300	3900		0.28	0.73	2.7	_
		90	4300	3900		0.27	0.73	2.7	-
		100	4300	3900		0.27	0.73	2.7	-

- \divideontimes 1 With nominal input speed, service life is 20,000 hours.
- \divideontimes 2 The maximum torque when starting and stopping.
- $\mbox{\%}$ 3 The maximum torque when it receives shock (up to 1,000 times)
- X 4 The maximum average input speed.
- X 5 The maximum momentary input speed.
- \divideontimes 6 With this load and nominal input speed, service life will be 20,000 hours.

(Applied to the output shaft center, at axial load 0)

- $\ensuremath{\cancel{\times}}$ 7 With this load and nominal input speed, service life will be 20,000 hours. (Applied to the output side bearing, at radial load 0)
- $\ensuremath{\mathbb{X}}$ 8 The maximum radial load the reducer can accept.
- X 9 The maximum axial load the reducer can accept.
- ¾ 10 The weight may vary slightly model to model.

Coaxial shaft VRB series

VRB-14	<i>40</i>		※ 1	 2	※ 3	※ 4	※ 5	※ 6	※ 7
Frame size	Stage		Nominal output torque	Maximum output torque	Emergency stop torque	Nominal input speed	Maximum input speed	Permitted radial load	Permitted axial load
			[Nm]	[Nm]	[Nm]	[rpm]	[rpm]	[N]	[N]
		3	240	470	1000	2000	4000	3200	2400
		4	240	700	1250	2000	4000	3500	2700
		5	360	700	1250	2000	4000	3800	3000
	Single	6	360	700	1250	2000	4000	4000	3300
	Sirigie	7	360	700	1250	2000	4000	4200	3500
		8	360	700	1250	2000	4000	4400	3700
		9	240	470	1000	2000	4000	4600	3900
		10	240	470	1000	2000	4000	4700	4100
		15	240	470	1000	2000	4000	5400	4900
		16	360	700	1250	2000	4000	5500	5000
		20	360	700	1250	2000	4000	6000	5500
140		25	360	700	1250	2000	4000	6400	6100
		28	360	700	1250	2000	4000	6700	6400
		30	240	470	1000	2000	4000	6800	6600
		35	360	700	1250	2000	4000	7200	7000
	Double	40	360	700	1250	2000	4000	7500	7500
		45	240	470	1000	2000	4000	7800	7900
		50	360	700	1250	2000	4000	8100	8200
		60	360	700	1250	2000	4000	8600	8200
		70	360	700	1250	2000	4000	9100	8200
		80	360	700	1250	2000	4000	9100	8200
		90	240	470	1000	2000	4000	9100	8200
		100	240	470	1000	2000	4000	9100	8200
				※ 9	※ 10				

Frame size	Stage	Ratio	Maximum radial load	Maximum axial load	Weight	Moment of inertia $(\leq \phi 19)$	Moment of inertia $(\leqq \phi 28)$	Moment of inertia $(\leqq \phi \ 38)$	Moment of inertia $(\leqq \phi 48)$
			[N]	[N]	[kg]	[kgcm ²]	[kgcm ²]	[kgcm ²]	[kgcm ²]
		3	9100	8200		_	12	20	42
		4	9100	8200		ı	7.5	15	37
		5	9100	8200		ı	5.8	14	36
	C:l-	6	9100	8200	16	ı	4.9	13	35
	Single	7	9100	8200	10	1	4.1	12	34
		8	9100	8200		ı	3.8	12	34
		9	9100	8200		-	3.6	11	34
		10	9100	8200		_	3.5	11	34
		15	9100	8200		1.3	3.2	11	-
		16	9100	8200		1.5	3.5	11	ı
		20	9100	8200		1.2	3.1	11	ı
140		25	9100	8200		1.1	3.1	11	ı
		28	9100	8200		1.4	3.3	11	ı
		30	9100	8200		0.85	2.8	10	-
		35	9100	8200		1.1	3.1	11	ı
	Double	40	9100	8200	17	0.83	2.8	10	-
		45	9100	8200		1.1	3.0	11	_
		50	9100	8200		0.81	2.8	10	ı
		60	9100	8200		0.81	2.8	10	1
		70	9100	8200		0.80	2.8	10	1
		80	9100	8200		0.80	2.8	10	1
		90	9100	8200		0.80	2.8	10	ı
		100	9100	8200		0.80	2.8	10	1

- $\frak{\%}$ 1 With nominal input speed, service life is 20,000 hours.
- \divideontimes 2 The maximum torque when starting and stopping.
- \divideontimes 3 The maximum torque when it receives shock (up to 1,000 times)
- \divideontimes 5 The maximum momentary input speed.
- % 6 With this load and nominal input speed, service life will be 20,000 hours. (Applied to the output shaft center, at axial load 0)
- $\mbox{\%}$ 7 With this load and nominal input speed, service life will be 20,000 hours. (Applied to the output side bearing, at radial load 0)
- $\ensuremath{\ensuremath{\mathbb{X}}}$ 8 The maximum radial load the reducer can accept.
- imes 9 The maximum axial load the reducer can accept.
- \divideontimes 10 The weight may vary slightly model to model.

RB-18	30		※ 1	※ 2	※ 3	※ 4	※ 5	※ 6	※ 7
Frame size	Stage	Ratio	Nominal output torque	Maximum output torque	Emergency stop torque	Nominal input speed	Maximum input speed	Permitted radial load	Permitted axial load
			[Nm]	[Nm]	[Nm]	[rpm]	[rpm]	[N]	[N]
		3	500	970	2200	1500	3000	5600	4300
		4	750	1400	2750	1500	3000	6200	4900
		5	750	1400	2750	1500	3000	6700	5400
	Single	6	750	1400	2750	1500	3000	7100	5800
	Olligie	7	750	1400	2750	1500	3000	7400	6300
		8	750	1400	2750	1500	3000	7800	6600
		9	500	970	2200	1500	3000	8100	7000
		10	500	970	2200	1500	3000	8400	7300
		15	500	970	2200	1500	3000	9600	8700
		16	750	1400	2750	1500	3000	9800	8900
		20	750	1400	2750	1500	3000	11000	9900
180		25	750	1400	2750	1500	3000	11000	11000
		28	750	1400	2750	1500	3000	12000	11000
		30	500	970	2200	1500	3000	12000	12000
		35	750	1400	2750	1500	3000	13000	13000
	Double	40	750	1400	2750	1500	3000	13000	13000
		45	500	970	2200	1500	3000	14000	14000
		50	750	1400	2750	1500	3000	14000	14000
		60	750	1400	2750	1500	3000	15000	14000
		70	750	1400	2750	1500	3000	15000	14000
		80	750	1400	2750	1500	3000	15000	14000
		90	500	970	2200	1500	3000	15000	14000
100			500	970	2200	1500	3000	15000	14000
			% 8	※ 9	※ 10				

Frame size	Stage		Maximum radial load	Maximum axial load	Weight	Moment of inertia $(\leqq \phi 28)$	Moment of inertia $(\leq \phi 38)$	Moment of inertia $(\leq \phi 48)$	Moment of inertia $(\leq \phi 65)$
			[N]	[N]	[kg]	[kgcm ²]	[kgcm ²]	[kgcm ²]	[kgcm ²]
		3	15000	14000		_	44	66	130
		4	15000	14000		_	28	50	110
		5	15000	14000		_	22	44	100
	Single	6	15000	14000	36	_	18	41	100
	Sirigic	7	15000	14000	30	_	16	38	99
		8	15000	14000		_	15	37	97
		9	15000	14000		_	14	36	97
		10	15000	14000		_	14	36	96
		15	15000	14000		4.7	12	34	_
		16	15000	14000		5.4	13	35	-
		20	15000	14000		4.4	12	34	-
180		25	15000	14000		4.2	12	34	_
		28	15000	14000		4.9	13	35	_
		30	15000	14000		3.2	11	33	_
		35	15000	14000		4.1	12	34	-
	Double	40	15000	14000	37	3.2	11	33	_
		45	15000	14000		4.0	12	34	-
		50	15000	14000		3.1	11	33	-
		60	15000	14000		3.1	11	33	_
		70	15000	14000		3.1	11	33	-
		80	15000	14000		3.1	11	33	_
		90	15000	14000		3.1	11	33	_
		100	15000	14000		3.1	11	33	_

- \divideontimes 1 With nominal input speed, service life is 20,000 hours.
- \divideontimes 2 The maximum torque when starting and stopping.
- $\mbox{\%}$ 3 The maximum torque when it receives shock (up to 1,000 times)
- X 4 The maximum average input speed.
- X 5 The maximum momentary input speed.
- \divideontimes 6 With this load and nominal input speed, service life will be 20,000 hours.

(Applied to the output shaft center, at axial load 0)

- $\ensuremath{\cancel{\times}}$ 7 With this load and nominal input speed, service life will be 20,000 hours. (Applied to the output side bearing, at radial load 0)
- $\ensuremath{\mathbb{X}}$ 8 The maximum radial load the reducer can accept.
- X 9 The maximum axial load the reducer can accept.
- ¾ 10 The weight may vary slightly model to model.

/RB-220		※ 1	※ 2	※ 3	※ 4	※ 5	※ 6	※ 7
Frame Sta	ge Ratio	Nominal output torque	Maximum output torque	Emergency stop torque	Nominal input speed	Maximum input speed	Permitted radial load	Permitted axial load
		[Nm]	[Nm]	[Nm]	[rpm]	[rpm]	[N]	[N]
	3	1000	1600	4000	1000	2000	5800	6400
	4	1500	2300	5000	1000	2000	6400	7200
	5	1500	2300	5000	1000	2000	6900	7900
Sing	6	1500	2300	5000	1000	2000	7300	8600
Oil i	7	1500	2300	5000	1000	2000	7700	9200
	8	1500	2200	5000	1000	2000	8000	9700
	9	1000	1900	4000	1000	2000	8400	10000
	10	1000	1600	4000	1000	2000	8700	11000
	15	1000	1600	4000	1000	2000	9900	13000
	16	1500	2300	5000	1000	2000	10000	13000
	20	1500	2300	5000	1000	2000	11000	14000
220	25	1500	2300	5000	1000	2000	12000	14000
	28	1500	2300	5000	1000	2000	12000	14000
	30	1000	1600	4000	1000	2000	13000	14000
	35	1500	2300	5000	1000	2000	13000	14000
Dou	ble 40	1500	2300	5000	1000	2000	14000	14000
	45	1000	1300	4000	1000	2000	14000	14000
	50	1500	2300	5000	1000	2000	15000	14000
	60	1500	2300	5000	1000	2000	15000	14000
	70	1500	2300	5000	1000	2000	15000	14000
	80	1500	1800	5000	1000	2000	15000	14000
	90	1000	1300	4000	1000	2000	15000	14000
	100	1000	1200	4000	1000	2000	15000	14000
		※ 8	× 9	×10				

			/11.0	/11.0	7111.0			
Frame size	Stage	Ratio	Maximum radial load	Maximum axial load	Weight	Moment of inertia $(\leq \phi \ 38)$	Moment of inertia $(\leq \phi 48)$	Moment of inertia $(\leq \phi 65)$
			[N]	[N]	[kg]	[kgcm ²]	[kgcm ²]	[kgcm ²]
		3	15000	14000		-	90	150
		4	15000	14000		_	62	120
		5	15000	14000		_	52	110
	C'arda	6	15000	14000	53	_	47	110
	Single	7	15000	14000	33	_	42	100
		8	15000	14000		_	40	100
		9	15000	14000		_	39	99
		10	15000	14000		_	38	98
		15	15000	14000		14	36	-
		16	15000	14000		16	37	_
		20	15000	14000		14	35	-
220		25	15000	14000		14	35	-
		28	15000	14000		15	36	-
		30	15000	14000		12	34	-
		35	15000	14000		13	35	-
	Double	40	15000	14000	54	12	33	-
		45	15000	14000		13	35	-
		50	15000	14000		12	33	_
		60	15000	14000		12	33	_
		70	15000	14000		12	33	_
		80	15000	14000	1	12	33	-
		90	15000	14000		12	33	_
		100	15000	14000	1	12	33	_

- \divideontimes 1 With nominal input speed, service life is 20,000 hours.
- X 2 The maximum torque when starting and stopping.
- $\frak{\%}$ 3 The maximum torque when it receives shock (up to 1,000 times)
- \divideontimes 5 The maximum momentary input speed.
- $\stackrel{>}{\times}$ 6 With this load and nominal input speed, service life will be 20,000 hours. (Applied to the output shaft center, at axial load 0)
- With this load and nominal input speed, service life will be 20,000 hours.
 (Applied to the output side bearing, at radial load 0)
- 8 The maximum radial load the reducer can accept.
- \divideontimes 9 The maximum axial load the reducer can accept.
- \divideontimes 10 The weight may vary slightly model to model.

VRB-060 1stage

- X1 Length will vary depending on motor.
- X2 Bushing will be inserted to adapt to motor shaft.

42

VRB-060 2stage

- \boxtimes 1 Length will vary depending on motor.
- X2 Bushing will be inserted to adapt to motor shaft.

VRB-090 1stage

- X1 Length will vary depending on motor.
- X2 Bushing will be inserted to adapt to motor shaft.

VRB-090 2stage

- $\ensuremath{\ensuremath{\mathbb{X}}}$ 1 Length will vary depending on motor.
- *2 Bushing will be inserted to adapt to motor shaft.

VRB-115 1stage

- X1 Length will vary depending on motor.
- X2 Bushing will be inserted to adapt to motor shaft.

VRB-115 2stage

- $\ensuremath{\ensuremath{\mathbb{X}}}$ 1 Length will vary depending on motor.
- $\ensuremath{\cancel{\times}}\xspace 2$ Bushing will be inserted to adapt to motor shaft.

VRB-140 1stage

- X1 Length will vary depending on motor.
- X2 Bushing will be inserted to adapt to motor shaft.

VRB-140 2stage

- $\ensuremath{\ensuremath{\mathbb{X}}}$ 1 Length will vary depending on motor.
- $\ensuremath{\cancel{\times}}\xspace 2$ Bushing will be inserted to adapt to motor shaft.

VRB-180 1stage

- X1 Length will vary depending on motor.
- X2 Bushing will be inserted to adapt to motor shaft.

50

VRB-180 2stage

- $\ensuremath{\ensuremath{\mathbb{X}}}$ 1 Length will vary depending on motor.
- $\ensuremath{\cancel{\times}}\xspace 2$ Bushing will be inserted to adapt to motor shaft.

VRB series

VRB-220 1stage

- X 1 Length will vary depending on motor.
- $\ensuremath{\cancel{\times}}\xspace\,2$ Bushing will be inserted to adapt to motor shaft.

Dimensions

VRB-220 2stage

- X 1 Length will vary depending on motor.
- X2 Bushing will be inserted to adapt to motor shaft.

Model number	strate . A alamata a a ala			Single			Double				
Model number	**: Adapter code	L1	L2	L3	L4	L5	L1	L2	L3	L4	L5
	AA-AC-AD-AF-AG	112	75	□52	15.5	32	131	94	□52	15.5	32
VRB-060-□-□-8**	AB·AE·AH·AJ·AK	117	80	□52	20.5	37	136	99	□52	20.5	37
	BA•BB•BD•BE	112	75	□60	15.5	32	131	94	□60	15.5	32
Input shaft bore $\leq \phi$ 8	BC•BF	117	80	□60	20.5	37	136	99	□60	20.5	37
	CA	117	80	□70	20.5	37	136	99	□70	20.5	37
	BA·BB·BD·BE·BF·BG·BJ·BK	115	78	□65	16.5	35	136	99	□65	16.5	35
	BC•BH•BM	120	83	□65	21.5	40	141	104	□65	21.5	40
	BL	125	88	□65	26.5	45	146	109	□65	26.5	45
	CA	115	78	□70	16.5	35	136	99	□70	16.5	35
VRB-060-□-□-14**	СВ	120	83	□70	21.5	40	141	104	□70	21.5	40
	DA·DB·DC·DD·DF·DH	115	78	□80	16.5	35	136	99	□80	16.5	35
Input shaft bore $\leq \phi$ 14	DE	120	83	□80	21.5	40	141	104	□80	21.5	40
	DG	125	88	□80	26.5	45	146	109	□80	26.5	45
	EA-EB-EC	115	78	□90	16.5	35	136	99	□90	16.5	35
	ED	125	88	□90	26.5	45	146	109	□90	26.5	45
	FA	115	78	□100	16.5	35	136	99	□100	16.5	35
	GA	115	78	□115	16.5	35	136	99	□115	16.5	35
	DA-DB-DC	130	93	□80	25	50					
	DD	140	103	□80	35	60					
	DE	135	98	□80	30	55					
	EA	135	98	□90	30	55					
VDD 000 E E 10dele	EB	130	93	□90	25	50					
VRB-060-□-□-19**	EC	140	103	□90	35	60					
Input shaft bore $\leq \phi$ 19	FA	130	93	□100	25	50					
Input shart bore = \$ 10	FB	140	103	□100	35	60					
	GA•GC	135	98	□115	30	55					
	GB•GD	130	93	□115	25	50					
	HA	130	93	□130	25	50					
	НВ	145	108	□130	40	65					
	HC•HD•HE	135	98	□130	30	55					

 $[\]times$ 1 Single reduction : 1/3 \sim 1/10, Double reduction : 1/15 \sim 1/100

^{※2} Bushing will be inserted to adapt to motor shaft.

Model number	**: Adapter code	Single			Double						
Woder Humber	↑↑. Adapter Gode	L1	L2	L3	L4	L5	L1	L2	L3	L4	L5
	AA-AC-AD-AF-AG						160	112	□52	15.5	32
VRB-090-□-□-8**	AB•AE•AH•AJ•AK						165	117	□52	20.5	37
	BA·BB·BD·BE						160	112	□60	15.5	32
Input shaft bore $\leq \phi$ 8	BC•BF						165	117	□60	20.5	37
	CA						165	117	□70	20.5	37
	BA·BB·BD·BE·BF·BG·BJ·BK	143	95	□65	16.5	35	165	117	□65	16.5	35
	BC·BH·BM	148	100	□65	21.5	40	170	122	□65	21.5	40
	BL	153	105	□65	26.5	45	175	127	□65	26.5	45
	CA	143	95	□70	16.5	35	165	117	□70	16.5	35
VRB-090-□-□-14**	СВ	148	100	□70	21.5	40	170	122	□70	21.5	40
(DA · DB · DC · DD · DF · DH	143	95	□80	16.5	35	165	117	□80	16.5	35
Input shaft bore $\leq \phi$ 14	DE	148	100	□80	21.5	40	170	122	□80	21.5	40
	DG	153	105	□80	26.5	45	175	127	□80	26.5	45
	EA•EB•EC	143	95	□90	16.5	35	165	117	□90	16.5	35
	ED	153	105	□90	26.5	45	175	127	□90	26.5	45
	FA	143	95	□100	16.5	35	165	117	□100	16.5	35
	GA	143	95	□115	16.5	35	165	117	□115	16.5	35
	DA · DB · DC	153	105	□80	25	50	175	127	□80	25	50
	DD	163	115	□80	35	60	185	137	□80	35	60
	DE	158	110	□80	30	55	180	132	□80	30	55
	EA	158	110	□90	30	55	180	132	□90	30	55
V/DD 000 E E 10	EB	153	105	□90	25	50	175	127	□90	25	50
VRB-090-□-□-19**	EC	163	115	□90	35	60	185	137	□90	35	60
Input shaft bore $\leq \phi$ 19	FA	153	105	□100	25	50	175	127	□100	25	50
Input shart bore \$ 713	FB	163	115	□100	35	60	185	137	□100	35	60
	GA•GC	158	110	□115	30	55	180	132	□115	30	55
	GB•GD	153	105	□115	25	50	175	127	□115	25	50
	HA	153	105	□130	25	50	175	127	□130	25	50
	НВ	168	120	□130	40	65	190	142	□130	40	65
	HC+HD+HE	158	110	□130	30	55	180	132	□130	30	55
	FA•FB•FC	170	122	□100	35	67					
	GA-GB-GC-GD-GE-GF-GG	170	122	□115	35	67					
	HA•HC•HD	170	122	□130	35	67					
VRB-090-□-□-28**	НВ	180	132	□130	45	77					
	JA•JB•JC	170	122	□150	35	67					
Input shaft bore $\leq \phi$ 28	KA•KB	170	122	□180	35	67					
	KD		132	□180	45	77					
	LA	170	122	□200	35	67					
	MA	170	122	□220	35	67					
			-	-	-						

 $[\]mbox{\ensuremath{\%}}\mbox{1}$ Single reduction : 1/3 $\mbox{\ensuremath{\sim}}\mbox{1/10},$ Double reduction : 1/15 $\mbox{\ensuremath{\sim}}\mbox{1/100}$

 $[\]frak{\%}\,2$ Bushing will be inserted to adapt to motor shaft.

Madalassashass	date Adamban and			Single			Double				
Model number	**:Adapter code	L1	L2	L3	L4	L5	L1	L2	L3	L4	L5
	BA·BB·BD·BE·BF·BG·BJ·BK						204.5	139.5	□65	16.5	35
	BC-BH-BM						209.5	144.5	□65	21.5	40
	BL						214.5	149.5	□65	26.5	45
	CA						204.5	139.5	□70	16.5	35
VRB-115-□-□-14**	СВ						209.5	144.5	□70	21.5	40
	DA.DB.DC.DD.DF.DH						204.5	139.5	□80	16.5	35
Input shaft bore $\leq \phi$ 14	DE						209.5	144.5	□80	21.5	40
	DG						214.5	149.5	□80	26.5	45
	EA-EB-EC						204.5	139.5	□90	16.5	35
	ED						214.5	149.5	□90	26.5	45
	FA						204.5	139.5	□100	16.5	35
	GA						204.5	139.5	□115	16.5	35
	DA·DB·DC	187	122	□80	25	50	214.5	149.5	□80	25	50
	DD	197	132	□80	35	60	224.5	159.5	□80	35	60
	DE	192	127	□80	30	55	219.5	154.5	□80	30	55
	EA	192	127	□90	30	55	219.5	154.5	□90	30	55
VRB-115-□-□-19**	EB	187	122	□90	25	50	214.5	149.5	□90	25	50
	EC	197	132	□90	35	60	224.5	159.5	□90	35	60
Input shaft bore $\leq \phi$ 19	FA	187	122	□100	25	50	214.5	149.5	□100	25	50
	FB	197	132	□100	35	60	224.5	159.5	□100	35	60
	GA•GC	192	127	□115	30	55	219.5	154.5	□115	30	55
	GB•GD	187	122	□115	25	50	214.5	149.5	□115	25	50
	HA	187	122	□130	25	50	214.5	149.5	□130	25	50
	НВ	202	137	□130	40	65	229.5	164.5	□130	40	65
	HC•HD•HE	192	127	□130	30	55	219.5	154.5	□130	30	55
	FA•FB•FC	204	139	□100	35	67	231.5	166.5	□100	35	67
	GA-GB-GC-GD-GE-GF-GG	204	139	□115	35	67	231.5	166.5	□115	35	67
	HA•HC•HD	204	139	□130	35	67	231.5	166.5	□130	35	67
VRB-115-□-□-28**	НВ	214	149	□130	45	77	241.5	176.5	□130	45	77
(, , , , , , , , , , , , , , , , , , ,	JA•JB•JC	204	139	□150	35	67	231.5	166.5	□150	35	67
Input shaft bore $\leq \phi$ 28	KA•KB	204	139	□180	35	67	231.5	166.5	□180	35	67
	KD	214	149	□180	45	77	241.5	176.5	□180	45	77
	LA	204	139	□200	35	67	231.5	166.5	□200	35	67
	MA	204	139	□220	35	67	231.5	166.5	□220	35	67
	HA	225	160	□130	45	82		-			
	HB	220	155	□130	40	77					
VRB-115-□-□-38**	JA	225	160	□150	45	82		-			
(KA•KB•KC	225	160	□180	45	82					
Input shaft bore $\leq \phi$ 38	LA	225	160	□200	45	82					
	LB	235	170	□200	55	92					
	MA-MB	225	160	□220	45	82					
	NA	225	160	□250	45	82					

 $[\]stackrel{\times}{\times}$ 1 Single reduction : 1/3 \sim 1/10, Double reduction : 1/15 \sim 1/100

 $[\]frak{\%}\,2$ Bushing will be inserted to adapt to motor shaft.

Model number	**: Adapter code	Single				Double					
Wodel number	**: Adapter code	L1	L2	L3	L4	L5	L1	L2	L3	L4	L5
	DA-DB-DC						266.5	169.5	□80	25	50
	DD						276.5	179.5	□80	35	60
	DE						271.5	174.5	□80	30	55
	EA						271.5	174.5	□90	30	55
V/DD 440 E E 40	EB						266.5	169.5	□90	25	50
VRB-140-□-□-19**	EC						276.5	179.5	□90	35	60
Input shaft bore $\leq \phi$ 19	FA						266.5	169.5	□100	25	50
(,	FB						276.5	179.5	□100	35	60
	GA•GC						271.5	174.5	□115	30	55
	GB•GD						266.5	169.5	□115	25	50
	НА						266.5	169.5	□130	25	50
	НВ						281.5	184.5	□130	40	65
	HC·HD·HE						271.5	174.5	□130	30	55
	FA•FB•FC	249	152	□100	35	67	283.5	186.5	□100	35	67
	GA·GB·GC·GD·GE·GF·GG	249	152	□115	35	67	283.5	186.5	□115	35	67
	HA•HC•HD	249	152	□130	35	67	283.5	186.5	□130	35	67
VRB-140-□-□-28**	НВ	259	162	□130	45	77	293.5	196.5	□130	45	77
(,)	JA•JB•JC	249	152	□150	35	67	283.5	186.5	□150	35	67
Input shaft bore $\leq \phi$ 28	KA•KB	249	152	□180	35	67	283.5	186.5	□180	35	67
	KD	259	162	□180	45	77	293.5	196.5	□180	45	77
	LA	249	152	□200	35	67	283.5	186.5	□200	35	67
	MA	249	152	□220	35	67	283.5	186.5	□220	35	67
	НА	264	167	□130	45	82	298.5	201.5	□130	45	82
	НВ	259	162	□130	40	77	293.5	196.5	□130	40	77
VRB-140-□-□-38**	JA	264	167	□150	45	82	298.5	201.5	□150	45	82
VRB-140-∐-∐-38**	KA•KB•KC	264	167	□180	45	82	298.5	201.5	□180	45	82
Input shaft bore $\leq \phi$ 38	LA	264	167	□200	45	82	298.5	201.5	□200	45	82
(LB	274	177	□200	55	92	308.5	211.5	□200	55	92
	MA•MB	264	167	□220	45	82	298.5	201.5	□220	45	82
	NA	264	167	□250	45	82	298.5	201.5	□250	45	82
	KB•KC	285	188	□180	55	98					
	KA	305	208	□180	75	118					
VRB-140-□-□-48**	LA	285	188	□200	55	98					
(MA	285	188	□220	55	98					
Input shaft bore $\leq \phi$ 48	MB	305	208	□220	75	118					
	NA	305	208	□250	75	118					
	PA	305	208	□280	75	118					

 $[\]mbox{\ensuremath{\%}}\mbox{1 Single reduction}: 1/3 \mbox{\ensuremath{\sim}}\mbox{1/10},$ Double reduction : 1/15 $\mbox{\ensuremath{\sim}}\mbox{1/100}$

 $[\]frak{\%}\,2$ Bushing will be inserted to adapt to motor shaft.

Model number	ww. A			Single			Double				
Woder Hamber	**: Adapter code	L1	L2	L3	L4	L5	L1	L2	L3	L4	L5
	FA·FB·FC						316	211	□100	35	67
	GA-GB-GC-GD-GE-GF-GG						316	211	□115	35	67
	HA•HC•HD						316	211	□130	35	67
VRB-180-□-□-28**	НВ						326	221	□130	45	77
VILD 100 🗀 🗀 20-1	JA•JB•JC						316	211	□150	35	67
Input shaft bore $\leq \phi$ 28	KA•KB						316	211	□180	35	67
input share boro = \$20)	KD						326	221	□180	45	77
	LA						316	211	□200	35	67
	MA						316	211	□220	35	67
	HA	286.5	181.5	□130	45	82	331	226	□130	45	82
	HB	281.5	176.5	□130	40	77	326	221	□130	40	77
\/PR-180-□-□-38**	JA	286.5	181.5	□150	45	82	331	226	□150	45	82
VRB-180-□-□-38**	KA•KB•KC	286.5	181.5	□180	45	82	331	226	□180	45	82
Input shaft bore $\leq \phi$ 38	LA	286.5	181.5	□200	45	82	331	226	□200	45	82
(,	LB	296.5	191.5	□200	55	92	341	236	□200	55	92
	MA•MB	286.5	181.5	□220	45	82	331	226	□220	45	82
	NA	286.5	181.5	□250	45	82	331	226	□250	45	82
	KB•KC	302.5	197.5	□180	55	98	347	242	□180	55	98
	KA	322.5	217.5	□180	75	118	367	262	□180	75	118
VRB-180-□-□-48**	LA	302.5	197.5	□200	55	98	347	242	□200	55	98
(1,, 1,, 1,	MA	302.5	197.5	□220	55	98	347	242	□220	55	98
Input shaft bore $\leq \phi$ 48	MB	322.5	217.5	□220	75	118	367	262	□220	75	118
	NA	322.5	217.5	□250	75	118	367	262	□250	75	118
	PA	322.5	217.5	□280	75	118	367	262	□280	75	118
	MA·MB·MC·MD	334	229	□220	80	122					
VRB-180-□-□-65**	NA	334	229	□250	80	122					
	PA	354	249	□280	100	142					
Input shaft bore ≤ φ 65	PB	364	259	□280	110	152					
	QA	354	249	□320	100	142					

 $[\]times$ 1 Single reduction : 1/3 \sim 1/10, Double reduction : 1/15 \sim 1/100

imes 2 Bushing will be inserted to adapt to motor shaft.

Model number	**: Adapter code			Single			Double					
Model Hamber	**.Adapter code	L1	L2	L3	L4	L5	L1	L2	L3	L4	L5	
	НА						366.5	228.5	□130	45	82	
	НВ						361.5	223.5	□130	40	77	
VRB-220-□-□-38**	JA						366.5	228.5	□150	45	82	
VRB-220-LI-LI-38**	KA-KB-KC						366.5	228.5	□180	45	82	
Input shaft bore ≤ ϕ 38	LA						366.5	228.5	□200	45	82	
	LB						376.5	238.5	□200	55	92	
	MA•MB						366.5	228.5	□220	45	82	
	NA						366.5	228.5	□250	45	82	
	KB•KC	347.5	209.5	□180	55	98	382.5	244.5	□180	55	98	
	KA	367.5	229.5	□180	75	118	402.5	264.5	□180	75	118	
VRB-220-□-□-48**	LA	347.5	209.5	□200	55	98	382.5	244.5	□200	55	98	
	MA	347.5	209.5	□220	55	98	382.5	244.5	□220	55	98	
Input shaft bore ≦ ϕ 48	MB	367.5	229.5	□220	75	118	402.5	264.5	□220	75	118	
	NA	367.5	229.5	□250	75	118	402.5	264.5	□250	75	118	
	PA	367.5	229.5	□280	75	118	402.5	264.5	□280	75	118	
	MA·MB·MC·MD	371.5	233.5	□220	80	122						
VRB-220-□-□-65**	NA	371.5	233.5	□250	80	122						
(, , , , , , , , , , , , , , , , , , ,	PA	391.5	253.5	□280	100	142						
Input shaft bore $\leq \phi$ 65	РВ	401.5	263.5	□280	110	152						
	QA	391.5	253.5	□320	100	142						

 $[\]mbox{\ensuremath{\%}}\mbox{\ensuremath{1}}$ Single reduction : 1/15 $\mbox{\ensuremath{\sim}}\mbox{\ensuremath{1/10}}$ 1/100

 $[\]ensuremath{\cancel{\times}}\xspace\,2$ Bushing will be inserted to adapt to motor shaft.

MEMO	

SHIMPO

For servo motor

ABLEREDUCER

VRL Series

Quiet operation

Helical gears contribute to reduce vibration and noise.

High precision

Standard backlash is 5 arc-min, ideal for precision control.

High rigidity & torque

High rigidity & high torque were achived by uncaged needle roller bearings.

Adapter-bushing connection

Can be attached to any motor all over the world.

No grease leakage

Perfect solution using high viscosity anti-separation grease.

Maintenance-free

No need to replace the grease for the life of the unit. Can be attached in any position.

VRL series

※1 Mount code

Mount code varies depending on the motor.

Please refer to reducer selection tool or contact us for more information.

Selection tool (English)

(http://www.nidec-shimpo.co.jp/selection/eng/)

VRL-07	70B		※ 1	※ 2	※ 3	※ 4	※ 5	※ 6	※ 7
Frame size	Stage	Ratio	Nominal output torque	Maximum output torque	Emergency stop torque	Nominal input speed	Maximum input speed	Permitted radial load	Permitted axial load
			[Nm]	[Nm]	[Nm]	[rpm]	[rpm]	[N]	[N]
		3	18	35	80	3000	6000	430	310
		4	27	50	100	3000	6000	470	360
		5	27	50	100	3000	6000	510	390
	Single	6	27	50	100	3000	6000	540	430
	Single	7	27	50	100	3000	6000	570	460
		8	27	50	100	3000	6000	600	480
		9	18	35	80	3000	6000	620	510
		10	18	35	80	3000	6000	640	530
		15	18	35	80	3000	6000	740	630
		16	27	50	100	3000	6000	750	650
		20	27	50	100	3000	6000	810	720
070B		25	27	50	100	3000	6000	870	790
		28	27	50	100	3000	6000	910	830
		30	18	35	80	3000	6000	930	860
		35	27	50	100	3000	6000	980	920
	Double	40	27	50	100	3000	6000	1000	970
		45	18	35	80	3000	6000	1100	1000
		50	27	50	100	3000	6000	1100	1100
		60	27	50	100	3000	6000	1200	1100
		70	27	50	100	3000	6000	1200	1100
		80	27	50	100	3000	6000	1200	1100
		90	18	35	80	3000	6000	1200	1100
		100	18	35	80	3000	6000	1200	1100
				※ 9	※ 10				

			7.0	7.0	/X 10				
Frame size	Stage	Ratio	Maximum radial load	Maximum axial load	Weight	Moment of inertia $(\leq \phi 8)$	Moment of inertia $(\leq \phi 14)$	Moment of inertia $(\leq \phi 19)$	
			[N]	[N]	[kg]	[kgcm ²]	[kgcm ²]	[kgcm ²]	
		3	1200	1100		0.14	0.22	0.43	
		4	1200	1100		0.095	0.17	0.38	
		5	1200	1100		0.077	0.16	0.36	
	C'arak	6	1200	1100	1.5	0.068	0.15	0.36	
	Single	7	1200	1100	1.0	0.062	0.14	0.35	
		8	1200	1100		0.059	0.14	0.35	
		9	1200	1100		0.057	0.14	0.34	
		10	1200	1100		0.056	0.14	0.34	
		15	1200	1100		0.055	0.14	_	
		16	1200	1100		0.057	0.14	_	
		20	1200	1100		0.054	0.13	_	
070B		25	1200	1100		0.053	0.13	_	
		28	1200	1100			0.055	0.14	_
		30	1200	1100			0.049	0.13	_
		35	1200	1100		0.053	0.13	_	
	Double	40	1200	1100	1.7	0.049	0.13	_	
		45	1200	1100		0.053	0.13	_	
		50	1200	1100		0.049	0.13	_	
		60	1200	1100		0.049	0.13	_	
		70	1200	1100		0.049	0.13	_	
		80 1200 1100		0.049	0.13	_			
		90	1200	1100		0.049	0.13	_	
		100	1200	1100		0.049	0.13	_	

- X 2 The maximum torque when starting and stopping.
- $\mbox{\% 3}$ The maximum torque when it receives shock (up to 1,000 times)
- 💥 4 The maximum average input speed.
- $\mbox{\%}$ 5 The maximum momentary input speed.
- 💥 6 With this load and nominal input speed, service life will be 20,000 hours. (Applied to the output shaft center, at axial load 0) $\,$
- * 7 With this load and nominal input speed, service life will be 20,000 hours. (Applied to the output side bearing, at radial load 0) $\,$
- $\frak{\%}$ 8 The maximum radial load the reducer can accept.
- $\ensuremath{\,\mathbb{X}}\xspace$ 9 The maximum axial load the reducer can accept.
- X 10 The weight may vary slightly model to model.

<i>VRL-09</i>	90B		※ 1	※ 2	※ 3	※ 4	※ 5	※ 6	※ 7
Frame size	Stage	Ratio	Nominal output torque	Maximum output torque	Emergency stop torque	Nominal input speed	Maximum input speed	Permitted radial load	Permitted axial load
			[Nm]	[Nm]	[Nm]	[rpm]	[rpm]	[N]	[N]
		3	50	80	200	3000	6000	810	930
		4	75	125	250	3000	6000	890	1100
		5	75	125	250	3000	6000	960	1200
	Single	6	75	125	250	3000	6000	1000	1300
	Olligie	7	75	125	250	3000	6000	1100	1300
		8	75	125	250	3000	6000	1100	1400
		9	50	80	200	3000	6000	1200	1500
		10	50	80	200	3000	6000	1200	1600
		15	50	80	200	3000	6000	1400	1900
		16	75	125	250	3000	6000	1400	1900
		20	75	125	250	3000	6000	1500	2100
090B		25	75	125	250	3000	6000	1600	2200
		28	75	125	250	3000	6000	1700	2200
		30	50	80	200	3000	6000	1700	2200
		35	75	125	250	3000	6000	1800	2200
	Double	40	75	125	250	3000	6000	1900	2200
		45	50	80	200	3000	6000	2000	2200
		50	75	125	250	3000	6000	2100	2200
		60	75	125	250	3000	6000	2200	2200
		70	75	125	250	3000	6000	2300	2200
		80	75	125	250	3000	6000	2400	2200
		90	50	80	200	3000	6000	2400	2200
		100	50	80	200	3000	6000	2400	2200
			※ 8	※ 9	※ 10				

Frame size	Stage	Ratio	Maximum radial load	Maximum axial load	Weight	Moment of inertia $(\leqq \phi 8)$	Moment of inertia $(\leq \phi 14)$	Moment of inertia $(\leqq \phi 19)$	Moment of inertia $(\leq \phi 28)$	
			[N]	[N]	[kg]	[kgcm ²]	[kgcm ²]	[kgcm ²]	[kgcm ²]	
		3	2400	2200		_	0.72	1.2	3.2	
		4	2400	2200		_	0.49	0.95	3.0	
		5	2400	2200			-	0.40	0.86	2.9
	Cin ala	6	2400	2200	3.5	_	0.36	0.82	2.8	
	Single	7	2400	2200	3.0	_	0.32	0.79	2.8	
		8	2400	2200		_	0.31	0.77	2.8	
		9	2400	2200		-	0.29	0.76	2.8	
		10	2400	2200		_	0.29	0.75	2.8	
		15	2400	2200		0.13	0.28	0.72	_	
		16	2400	2200		0.15	0.30	0.74	_	
		20	2400	2200		0.13	0.28	0.72	_	
090B		25	2400	2200		0.12	0.28	0.71	_	
		28	2400	2200		0.14	0.29	0.73	_	
		30	2400	2200		0.10	0.25	0.70	_	
		35	2400	2200		0.12	0.27	0.71	_	
	Double	40	2400	2200	4	0.099	0.25	0.70	_	
		45	2400	2200		0.12	0.27	0.71	_	
		50	2400	2200		0.098	0.25	0.69	_	
		60	2400	2200		0.098	0.25	0.69	_	
		70	2400	2200		0.097	0.25	0.69	_	
		80	2400	2200		0.097	0.25	0.69	_	
		90	2400	2200		0.097	0.25	0.69	_	
		100	2400	2200		0.097	0.25	0.69	_	

- \divideontimes 2 The maximum torque when starting and stopping.
- \divideontimes 3 The maximum torque when it receives shock (up to 1,000 times)
- 💥 4 The maximum average input speed.
- $\mbox{\%}$ 5 The maximum momentary input speed.
- % 6 With this load and nominal input speed, service life will be 20,000 hours. (Applied to the output shaft center, at axial load 0)
- $\mbox{\%}$ 7 With this load and nominal input speed, service life will be 20,000 hours. (Applied to the output side bearing, at radial load 0)
- 💥 8 The maximum radial load the reducer can accept.
- \divideontimes 9 The maximum axial load the reducer can accept.
- ¾ 10 The weight may vary slightly model to model.

<u> </u>	<i>20B</i>		※ 1	※ 2	% 3	※ 4	※ 5	※ 6	※ 7
Frame size	Stage	Ratio	Nominal output torque	Maximum output torque	Emergency stop torque	Nominal input speed	Maximum input speed	Permitted radial load	Permitted axial load
			[Nm]	[Nm]	[Nm]	[rpm]	[rpm]	[N]	[N]
		3	120	225	500	3000	6000	1300	1500
		4	120	330	625	3000	6000	1500	1700
		5	180	330	625	3000	6000	1600	1900
	Single	6	180	330	625	3000	6000	1700	2000
	Single	7	180	330	625	3000	6000	1800	2100
		8	180	330	625	3000	6000	1900	2300
		9	120	225	500	3000	6000	1900	2400
		10	120	225	500	3000	6000	2000	2500
		15	120	225	500	3000	6000	2300	3000
		16	180	330	625	3000	6000	2300	3100
		20	180	330	625	3000	6000	2500	3400
120B		25	180	330	625	3000	6000	2700	3700
		28	180	330	625	3000	6000	2800	3900
		30	120	225	500	3000	6000	2900	3900
		35	180	330	625	3000	6000	3000	3900
	Double	40	180	330	625	3000	6000	3200	3900
		45	120	225	500	3000	6000	3300	3900
		50	180	330	625	3000	6000	3400	3900
		60	180	330	625	3000	6000	3600	3900
		70	180	330	625	3000	6000	3800	3900
		80	180	330	625	3000	6000	4000	3900
		90	120	225	500	3000	6000	4200	3900
		100	120	225	500	3000	6000	4300	3900
			※ 8	※ 9	※ 10				

Frame size	Stage	Ratio	Maximum radial load	Maximum axial load	Weight	Moment of inertia $(\leq \phi 14)$	Moment of inertia $(\leq \phi 19)$	Moment of inertia $(\leqq \phi 28)$	Moment of inertia $(\leq \phi 38)$
			[N]	[N]	[kg]	[kgcm²]	[kgcm ²]	[kgcm ²]	[kgcm ²]
		3	4300	3900		-	3.3	5.3	13
		4	4300	3900		ı	2.0	4.1	12
		5	4300	3900		_	1.6	3.6	11
	C:I-	6	4300	3900	7.8	ı	1.3	3.3	11
	Single	7	4300	3900	7.0	_	1.1	3.2	11
		8	4300	3900		-	1.0	3.1	11
		9	4300	3900		ı	0.98	3.0	11
		10	0 4300 3900	-	0.95	3.0	11		
		15	4300	3900	8.7	0.43	0.86	2.8	ı
		16	4300	3900		0.48	0.92	2.9	1
		20	4300	3900		0.40	0.83	2.8	-
120B		25	4300	3900		0.38	0.82	2.8	1
		28	4300	3900		0.44	0.88	2.8	1
		30	4300	3900		0.29	0.74	2.7	ı
		35	4300	3900		0.37	0.81	2.7	ı
	Double	40	4300	3900		0.28	0.73	2.7	-
		45	4300	3900		0.37	0.80	2.7	1
		50	4300	3900		0.28	0.73	2.7	ı
		60	4300	3900		0.28	0.73	2.7	ı
		70	4300	3900		0.28	0.73	2.7	ı
		80	4300	3900		0.28	0.73	2.7	1
		90	4300	3900		0.27	0.73	2.7	ı
		100	4300	3900		0.27	0.73	2.7	-

- \divideontimes 1 With nominal input speed, service life is 20,000 hours.
- X 2 The maximum torque when starting and stopping.
- $\mbox{\% 3}$ The maximum torque when it receives shock (up to 1,000 times)
- 💥 4 The maximum average input speed.
- $\mbox{\%}$ 5 The maximum momentary input speed.
- 💥 6 With this load and nominal input speed, service life will be 20,000 hours. (Applied to the output shaft center, at axial load 0) $\,$
- * 7 With this load and nominal input speed, service life will be 20,000 hours. (Applied to the output side bearing, at radial load 0) $\,$
- $\frak{\%}$ 8 The maximum radial load the reducer can accept.
- $\ensuremath{\ensuremath{\,\raisebox{.4ex}{\times}}}$ 9 The maximum axial load the reducer can accept.
- X 10 The weight may vary slightly model to model.

<u>VRL-155B</u>			※ 1	※ 2	※ 3	※ 4	※ 5	※ 6	※ 7
Frame size	Stage	Ratio	Nominal output torque	Maximum output torque	Emergency stop torque	Nominal input speed	Maximum input speed	Permitted radial load	Permitted axial load
			[Nm]	[Nm]	[Nm]	[rpm]	[rpm]	[N]	[N]
		3	240	470	1000	2000	4000	3200	2400
		4	240	700	1250	2000	4000	3500	2700
		5	360	700	1250	2000	4000	3800	3000
	Single	6	360	700	1250	2000	4000	4000	3300
	Sirigle	7	360	700	1250	2000	4000	4200	3500
		8	360	700	1250	2000	4000	4400	3700
		9	240	470	1000	2000	4000	4600	3900
		10	240	470	1000	2000	4000	4700	4100
		15	240	470	1000	2000	4000	5400	4900
		16	360	700	1250	2000	4000	5500	5000
		20	360	700	1250	2000	4000	6000	5500
155B		25	360	700	1250	2000	4000	6400	6100
		28	360	700	1250	2000	4000	6700	6400
		30	240	470	1000	2000	4000	6800	6600
		35	360	700	1250	2000	4000	7200	7000
	Double	40	360	700	1250	2000	4000	7500	7500
		45	240	470	1000	2000	4000	7800	7900
		50	360	700	1250	2000	4000	8100	8200
		60	360	700	1250	2000	4000	8600	8200
		70	360	700	1250	2000	4000	9100	8200
		80	360	700	1250	2000	4000	9100	8200
		90	240	470	1000	2000	4000	9100	8200
		100	240	470	1000	2000	4000	9100	8200
×8 ×9 ×10									

Frame size	Stage	Ratio	Maximum radial load	Maximum axial load	Weight	Moment of inertia $(\leqq \phi 19)$	Moment of inertia $(\leqq \phi 28)$	Moment of inertia $(\leq \phi 38)$	Moment of inertia $(\leq \phi 48)$
			[N]	[N]	[kg]	[kgcm ²]	[kgcm ²]	[kgcm ²]	[kgcm ²]
		3	9100	8200		-	12	20	42
		4	9100	8200		_	7.5	15	37
		5	9100	8200		_	5.8	14	36
	C'l.	6	9100	8200	16	_	4.9	13	35
	Single	7	9100	8200	10	-	4.1	12	34
		8	9100	8200		_	3.8	12	34
		9	9100	8200		_	3.6	11	34
		10	9100	8200		_	3.5	11	34
		15	9100	8200	-	1.3	3.2	11	-
		16	9100	8200		1.5	3.5	11	_
		20	9100	8200		1.2	3.1	11	-
155B		25	9100	8200		1.1	3.1	11	-
		28	9100	8200		1.4	3.3	11	_
		30	9100	8200		0.85	2.8	10	_
		35 9100 8	8200		1.1	3.1	11	-	
	Double	40	9100	8200	18	0.83	2.8	10	_
		45	9100	8200		1.1	3.0	11	-
		50	9100	8200		0.81	2.8	10	-
		60	9100	8200		0.81	2.8	10	-
		70	9100	8200		0.80	2.8	10	_
		80	9100	8200		0.80	2.8	10	_
		90	9100	8200		0.80	2.8	10	1
		100	9100	8200		0.80	2.8	10	_

- * 2 The maximum torque when starting and stopping.
- $\frak{\%}$ 3 The maximum torque when it receives shock (up to 1,000 times)
- 💥 4 The maximum average input speed.
- $\ensuremath{\ensuremath{\,\times}}$ 5 The maximum momentary input speed.
- $\mbox{\%}$ 7 With this load and nominal input speed, service life will be 20,000 hours. (Applied to the output side bearing, at radial load 0)
- 💥 8 The maximum radial load the reducer can accept.
- \divideontimes 9 The maximum axial load the reducer can accept.

Coaxial shaft

VRL-205B			※ 1	※ 2	※ 3	※ 4	※ 5	※ 6	※ 7
Frame size	Stage	Ratio	Nominal output torque	Maximum output torque	Emergency stop torque	Nominal input speed	Maximum input speed	Permitted radial load	Permitted axial load
		3	500	970	2200	1500	3000	5600	4300
		4	750	1400	2750	1500	3000	6200	4900
		5	750	1400	2750	1500	3000	6700	5400
		6	750	1400	2750	1500	3000	7100	5800
	Single	7	750	1400	2750	1500	3000	7400	6300
		8	750	1400	2750	1500	3000	7800	6600
		9	500	970	2200	1500	3000	8100	7000
		10	500	970	2200	1500	3000	8400	7300
		15	500	970	2200	1500	3000	9600	8700
		16	750	1400	2750	1500	3000	9800	8900
		20	750	1400	2750	1500	3000	11000	9900
205B		25	750	1400	2750	1500	3000	11000	11000
		28	750	1400	2750	1500	3000	12000	11000
		30	500	970	2200	1500	3000	12000	12000
		35	750	1400	2750	1500	3000	13000	13000
	Double	40	750	1400	2750	1500	3000	13000	13000
		45	500	970	2200	1500	3000	14000	14000
		50	750	1400	2750	1500	3000	14000	14000
		60	750	1400	2750	1500	3000	15000	14000
		70	750	1400	2750	1500	3000	15000	14000
		80	750	1400	2750	1500	3000	15000	14000
		90	500	970	2200	1500	3000	15000	14000
		100	500	970	2200	1500	3000	15000	14000
			<u></u>	※ 9	※ 10				

			/11.0	/11/4	/11				
Frame size	Stage	Ratio	Maximum radial load	Maximum axial load	Weight	Moment of inertia $(\leq \phi 28)$	Moment of inertia $(\leq \phi \ 38)$	Moment of inertia $(\leq \phi 48)$	Moment of inertia $(\leq \phi 65)$
			[N]	[N]	[kg]	[kgcm ²]	[kgcm ²]	[kgcm ²]	[kgcm ²]
		3	15000	14000		-	44	66	130
		4	15000	14000		_	28	50	110
		5	15000	14000		-	22	44	100
	Single	6	15000	14000	20	_	18	41	100
	Sirigie	7	15000	14000	39	-	16	38	99
		8	15000	14000		_	15	37	97
		9	15000	14000		-	14	36	97
		10	15000	14000		_	14	36	96
		15	15000	14000	40	4.7	12	34	_
		16	15000	14000		5.4	13	35	_
		20	15000	14000		4.4	12	34	-
205B		25	15000	14000		4.2	12	34	_
		28	15000	14000		4.9	13	35	-
		30	15000	14000		3.2	11	33	_
		35	15000	14000		4.1	12	34	_
	Double	40	15000	14000		3.2	11	33	_
		45	15000	14000		4.0	12	34	_
		50	15000	14000		3.1	11	33	_
		60	15000	14000		3.1	11	33	_
		70	15000	14000		3.1	11	33	_
		80	15000	14000		3.1	11	33	_
		90	15000	14000		3.1	11	33	_
		100	15000	14000		3.1	11	33	-

- \divideontimes 1 With nominal input speed, service life is 20,000 hours.
- X 2 The maximum torque when starting and stopping.
- $\mbox{\% 3}$ The maximum torque when it receives shock (up to 1,000 times)
- 💥 4 The maximum average input speed.
- $\mbox{\%}$ 5 The maximum momentary input speed.
- 💥 6 With this load and nominal input speed, service life will be 20,000 hours. (Applied to the output shaft center, at axial load 0) $\,$
- * 7 With this load and nominal input speed, service life will be 20,000 hours. (Applied to the output side bearing, at radial load 0) $\,$
- $\frak{\%}$ 8 The maximum radial load the reducer can accept.
- $\ensuremath{\,\mathbb{X}}\xspace$ 9 The maximum axial load the reducer can accept.
- X 10 The weight may vary slightly model to model.

Performance table

VRL-23	85B		※ 1	※ 2	※ 3	※ 4	※ 5	※ 6	※ 7
Frame size	Stage	Ratio	Nominal output torque	Maximum output torque	Emergency stop torque	Nominal input speed	Maximum input speed	Permitted radial load	Permitted axial load
			[Nm]	[Nm]	[Nm]	[rpm]	[rpm]	[N]	[N]
		3	1000	1600	4000	1000	2000	5800	6400
		4	1500	2300	5000	1000	2000	6400	7200
		5	1500	2300	5000	1000	2000	6900	7900
	Single	6	1500	2300	5000	1000	2000	7300	8600
	Olligie	7	1500	2300	5000	1000	2000	7700	9200
		8	1500	2200	5000	1000	2000	8000	9700
		9	1000	1900	4000	1000	2000	8400	10000
		10	1000	1600	4000	1000	2000	8700	11000
		15	1000	1600	4000	1000	2000	9900	13000
		16	1500	2300	5000	1000	2000	10000	13000
		20	1500	2300	5000	1000	2000	11000	14000
235B		25	1500	2300	5000	1000	2000	12000	14000
		28	1500	2300	5000	1000	2000	12000	14000
		30	1000	1600	4000	1000	2000	13000	14000
		35	1500	2300	5000	1000	2000	13000	14000
	Double	40	1500	2300	5000	1000	2000	14000	14000
		45	1000	1300	4000	1000	2000	14000	14000
		50	1500	2300	5000	1000	2000	15000	14000
		60	1500	2300	5000	1000	2000	15000	14000
		70	1500	2300	5000	1000	2000	15000	14000
		80	1500	1800	5000	1000	2000	15000	14000
		90	1000	1300	4000	1000	2000	15000	14000
		100	1000	1200	4000	1000	2000	15000	14000
•			※ 8	※ 9	※ 10	•			•

Frame size	Stage	Ratio	Maximum radial load	Maximum axial load	Weight	Moment of inertia $(\leqq \phi \ 38)$	Moment of inertia $(\leq \phi 48)$	Moment of inertia $(\leq \phi 65)$	
			[N]	[N]	[kg]	[kgcm ²]	[kgcm ²]	[kgcm ²]	
		3	15000	14000		-	90	150	
		4	15000	14000		_	62	120	
		5	15000	14000		_	52	110	
	Single	6	15000	14000	55	_	47	110	
	Sirigie	7	15000	14000	35	_	42	100	
		8	15000	14000		_	40	100	
		9	15000	14000		-	39	99	
		10	15000	14000		_	38	98	
		15	15000	14000		14	36	_	
		16	15000	14000		16	37	_	
		20	15000	14000		14	35	_	
235B		25	15000	14000		14	35	_	
		28	15000	14000		15	36	_	
		30	15000	14000		12	34	_	
		35	15000	14000		13	35	_	
	Double	40	15000	14000	57	12	33	_	
		45	15000	14000		13	35	-	
		50	15000	14000	1	12	33	_	
		60	15000	14000			12	33	-
		70	15000	14000		12	33	_	
		80	15000	14000		12	33	_	
		90	15000	14000		12	33	-	
		100	15000	14000	1	12	33	_	

- \divideontimes 1 With nominal input speed, service life is 20,000 hours.
- * 2 The maximum torque when starting and stopping.
- $\frak{\%}$ 3 The maximum torque when it receives shock (up to 1,000 times)
- 💥 4 The maximum average input speed.
- $\mbox{\%}$ 5 The maximum momentary input speed.
- % 6 With this load and nominal input speed, service life will be 20,000 hours. (Applied to the output shaft center, at axial load 0)
- $\mbox{\%}$ 7 With this load and nominal input speed, service life will be 20,000 hours. (Applied to the output side bearing, at radial load 0)
- 💥 8 The maximum radial load the reducer can accept.
- ¾ 10 The weight may vary slightly model to model.

VRL-070B 1stage

- \boxtimes 1 Length will vary depending on motor.
- X2 Bushing will be inserted to adapt to motor shaft.

Dimensions

VRL-070B 2stage

- X2 Bushing will be inserted to adapt to motor shaft.

VRL-090B 1stage

- \boxtimes 1 Length will vary depending on motor.
- X2 Bushing will be inserted to adapt to motor shaft.

VRL-090B 2stage

- \divideontimes 1 Length will vary depending on motor.
- X2 Bushing will be inserted to adapt to motor shaft.

VRL-120B 1stage

- \boxtimes 1 Length will vary depending on motor.
- X2 Bushing will be inserted to adapt to motor shaft.

VRL-120B 2stage

- $\ensuremath{\ensuremath{\mathbb{X}}}$ 1 Length will vary depending on motor.
- ※2 Bushing will be inserted to adapt to motor shaft.

VRL-155B 1stage

- \boxtimes 1 Length will vary depending on motor.
- X2 Bushing will be inserted to adapt to motor shaft.

VRL-155B 2stage

- $\ensuremath{\ensuremath{\mathbb{X}}}$ 1 Length will vary depending on motor.
- ※2 Bushing will be inserted to adapt to motor shaft.

VRL-205B 1stage

- X1 Length will vary depending on motor.
- X2 Bushing will be inserted to adapt to motor shaft.

Dimensions

VRL-205B 2stage

- \divideontimes 1 Length will vary depending on motor.
- X2 Bushing will be inserted to adapt to motor shaft.

VRL-235B 1stage

- X1 Length will vary depending on motor.

VRL-235B 2stage

- \divideontimes 1 Length will vary depending on motor.
- ※2 Bushing will be inserted to adapt to motor shaft.

Model number	dute Adambas and			Single					Double		
Model number	**: Adapter code	L1	L2	L3	L4	L5	L1	L2	L3	L4	L5
	AA-AC-AD-AF-AG	112	76	□52	15.5	32	131	95	□52	15.5	32
VRL-070B-□-□-8**	AB·AE·AH·AJ·AK	117	81	□52	20.5	37	136	100	□52	20.5	37
(BA•BB•BD•BE	112	76	□60	15.5	32	131	95	□60	15.5	32
Input shaft bore $\leq \phi$ 8	BC•BF	117	81	□60	20.5	37	136	100	□60	20.5	37
	CA	117	81	□70	20.5	37	136	100	□70	20.5	37
	BA·BB·BD·BE·BF·BG·BJ·BK	115	79	□65	16.5	35	136	100	□65	16.5	35
	BC•BH•BM	120	84	□65	21.5	40	141	105	□65	21.5	40
	BL	125	89	□65	26.5	45	146	110	□65	26.5	45
	CA	115	79	□70	16.5	35	136	100	□70	16.5	35
VRL-070B-□-□-14**	СВ	120	84	□70	21.5	40	141	105	□70	21.5	40
()	DA·DB·DC·DD·DF·DH	115	79	□80	16.5	35	136	100	□80	16.5	35
Input shaft bore $\leq \phi$ 14	DE	120	84	□80	21.5	40	141	105	□80	21.5	40
	DG	125	89	□80	26.5	45	146	110	□80	26.5	45
	EA•EB•EC	115	79	□90	16.5	35	136	100	□90	16.5	35
	ED	125	89	□90	26.5	45	146	110	□90	26.5	45
	FA	115	79	□100	16.5	35	136	100	□100	16.5	35
	GA	115	79	□115	16.5	35	136	100	□115	16.5	35
	DA-DB-DC	130	94	□80	25	50					
	DD	140	104	□80	35	60					
	DE	135	99	□80	30	55					
	EA	135	99	□90	30	55					
VDI 070D 🗆 🗆 1000	EB	130	94	□90	25	50					
VRL-070B-□-□-19**	EC	140	104	□90	35	60					
Input shaft bore $\leq \phi$ 19	FA	130	94	□100	25	50					
I I I I I I I I I I I I I I I I I I I	FB	140	104	□100	35	60					
	GA•GC	135	99	□115	30	55					
	GB•GD	130	94	□115	25	50					
	НА	130	94	□130	25	50					
	НВ	145	109	□130	40	65					
	HC•HD•HE	135	99	□130	30	55					

 $[\]divideontimes$ 1 Single reduction : 1/3 \sim 1/10, Double reduction : 1/15 \sim 1/100

 $[\]ensuremath{\cancel{\times}}\xspace\,2$ Bushing will be inserted to adapt to motor shaft.

Model number	**: Adapter code		Single						Double		
Model number	**.Adapter code	L1	L2	L3	L4	L5	L1	L2	L3	L4	L5
	AA·AC·AD·AF·AG						160	114	□52	15.5	32
VRL-090B-□-□-8**	AB-AE-AH-AJ-AK						165	119	□52	20.5	37
(,)	BA·BB·BD·BE						160	114	□60	15.5	32
Input shaft bore $\leq \phi$ 8	BC•BF						165	119	□60	20.5	37
	CA						165	119	□70	20.5	37
	BA·BB·BD·BE·BF·BG·BJ·BK	143	97	□65	16.5	35	165	119	□65	16.5	35
	BC•BH•BM	148	102	□65	21.5	40	170	124	□65	21.5	40
	BL	153	107	□65	26.5	45	175	129	□65	26.5	45
	CA	143	97	□70	16.5	35	165	119	□70	16.5	35
VRL-090B-□-□-14**	СВ	148	102	□70	21.5	40	170	124	□70	21.5	40
()	DA·DB·DC·DD·DF·DH	143	97	□80	16.5	35	165	119	□80	16.5	35
Input shaft bore $\leq \phi$ 14	DE	148	102	□80	21.5	40	170	124	□80	21.5	40
9	DG	153	107	□80	26.5	45	175	129	□80	26.5	45
	EA•EB•EC	143	97	□90	16.5	35	165	119	□90	16.5	35
	ED	153	107	□90	26.5	45	175	129	□90	26.5	45
	FA	143	97	□100	16.5	35	165	119	□100	16.5	35
	GA	143	97	□115	16.5	35	165	119	□115	16.5	35
	DA-DB-DC	153	107	□80	25	50	175	129	□80	25	50
	DD	163	117	□80	35	60	185	139	□80	35	60
	DE	158	112	□80	30	55	180	134	□80	30	55
	EA	158	112	□90	30	55	180	134	□90	30	55
\/DI 000D \(\operatorname{\text{T}} \) \(\operatorname{\text{T}} \)	EB	153	107	□90	25	50	175	129	□90	25	50
VRL-090B-□-□-19**	EC	163	117	□90	35	60	185	139	□90	35	60
Input shaft bore $\leq \phi$ 19	FA	153	107	□100	25	50	175	129	□100	25	50
Input shart bore 4 13	FB	163	117	□100	35	60	185	139	□100	35	60
	GA-GC	158	112	□115	30	55	180	134	□115	30	55
	GB•GD	153	107	□115	25	50	175	129	□115	25	50
	HA	153	107	□130	25	50	175	129	□130	25	50
	НВ	168	122	□130	40	65	190	144	□130	40	65
	HC•HD•HE	158	112	□130	30	55	180	134	□130	30	55
	FA•FB•FC	170	124	□100	35	67					
	GA·GB·GC·GD·GE·GF·GG	170	124	□115	35	67					
	HA•HC•HD	170	124	□130	35	67					
VRL-090B-□-□-28**	НВ	180	134	□130	45	77					
(JA•JB•JC	170	124	□150	35	67					
Input shaft bore $\leq \phi$ 28	KA•KB	170	124	□180	35	67					
	KD	180	134	□180	45	77					
	LA	170	124	□200	35	67					
	MA	170	124	□220	35	67					

 $[\]mbox{\ensuremath{\%}}\mbox{\ensuremath{1}}\mbox{\ensuremath{Single}}\mbox{ reduction}: 1/3 \mbox{\ensuremath{\sim}}\mbox{\ensuremath{1/10}}\mbox{\ensuremath{Double}}\mbox{ reduction}: 1/15 \mbox{\ensuremath{\sim}}\mbox{\ensuremath{1/100}}\mbox{\ensuremath{0}}\mbox{$

 $[\]ensuremath{\cancel{\times}}\xspace\,2$ Bushing will be inserted to adapt to motor shaft.

Model number	**: Adapter code	Single			Double						
	·	L1	L2	L3	L4	L5	L1	L2	L3	L4	L5
	BA·BB·BD·BE·BF·BG·BJ·BK						204.5	134.5	□65	16.5	35
	BC•BH•BM						209.5	139.5	□65	21.5	40
	BL						214.5	144.5	□65	26.5	45
	CA						204.5	134.5	□70	16.5	35
VRL-120B-□-□-14**	СВ						209.5	139.5	□70	21.5	40
	DA · DB · DC · DD · DF · DH						204.5	134.5	□80	16.5	35
Input shaft bore $\leq \phi$ 14	DE						209.5	139.5	□80	21.5	40
	DG						214.5	144.5	□80	26.5	45
	EA-EB-EC						204.5	134.5	□90	16.5	35
	ED						214.5	144.5	□90	26.5	45
	FA						204.5	134.5	□100	16.5	35
	GA						204.5	134.5	□115	16.5	35
	DA-DB-DC	187	117	□80	25	50	214.5	144.5	□80	25	50
	DD	197	127	□80	35	60	224.5	154.5	□80	35	60
	DE	192	122	□80	30	55	219.5	149.5	□80	30	55
	EA	192	122	□90	30	55	219.5	149.5	□90	30	55
VDI 400D D D 40	EB	187	117	□90	25	50	214.5	144.5	□90	25	50
VRL-120B-□-□-19**	EC	197	127	□90	35	60	224.5	154.5	□90	35	60
Input shaft bore $\leq \phi$ 19	FA	187	117	□100	25	50	214.5	144.5	□100	25	50
[Input share bore = \$ 10]	FB	197	127	□100	35	60	224.5	154.5	□100	35	60
	GA•GC	192	122	□115	30	55	219.5	149.5	□115	30	55
	GB•GD	187	117	□115	25	50	214.5	144.5	□115	25	50
	HA	187	117	□130	25	50	214.5	144.5	□130	25	50
	НВ	202	132	□130	40	65	229.5	159.5	□130	40	65
	HC•HD•HE	192	122	□130	30	55	219.5	149.5	□130	30	55
	FA•FB•FC	204	134	□100	35	67	231.5	161.5	□100	35	67
	GA-GB-GC-GD-GE-GF-GG	204	134	□115	35	67	231.5	161.5	□115	35	67
VRL-120B-□-□-28**	HA•HC•HD	204	134	□130	35	67	231.5	161.5	□130	35	67
VKL=120B=L1=L1=20**	НВ	214	144	□130	45	77	241.5	171.5	□130	45	77
Input shaft bore $\leq \phi$ 28	JA•JB•JC	204	134	□150	35	67	231.5	161.5	□150	35	67
	KA•KB	204	134	□180	35	67	231.5	161.5	□180	35	67
	KD	214	144	□180	45	77	241.5	171.5	□180	45	77
	LA	204	134	□200	35	67	231.5	161.5	□200	35	67
	MA	204	134	□220	35	67	231.5	161.5	□220	35	67
	НА	225	155	□130	45	82					
	НВ	220	150	□130	40	77					
VRL-120B-□-□-38**	JA	225	155	□150	45	82					
VIL 1200 LI 00***	KA•KB•KC	225	155	□180	45	82					
Input shaft bore $\leq \phi$ 38	LA	225	155	□200	45	82					
(LB	235	165	□200	55	92					
	MA•MB	225	155	□220	45	82					
	NA	225	155	□250	45	82					

 $[\]stackrel{>}{\times}$ 1 Single reduction : 1/3 \sim 1/10, Double reduction : 1/15 \sim 1/100

 $[\]frak{\%}\,2$ Bushing will be inserted to adapt to motor shaft.

Model number	**: Adapter code			Single			Double				
Woder Humber	Adapter Code	L1	L2	L3	L4	L5	L1	L2	L3	L4	L5
	DA·DB·DC						266.5	169.5	□80	25	50
	DD						276.5	179.5	□80	35	60
	DE						271.5	174.5	□80	30	55
	EA						271.5	174.5	□90	30	55
VDI 1550 0 0 1000	EB						266.5	169.5	□90	25	50
VRL-155B-□-□-19**	EC						276.5	179.5	□90	35	60
Input shaft bore≦ <i>ϕ</i> 19	FA						266.5	169.5	□100	25	50
(,	FB						276.5	179.5	□100	35	60
	GA•GC						271.5	174.5	□115	30	55
	GB•GD						266.5	169.5	□115	25	50
	HA						266.5	169.5	□130	25	50
	НВ						281.5	184.5	□130	40	65
	HC·HD·HE						271.5	174.5	□130	30	55
	FA·FB·FC	249	152	□100	35	67	283.5	186.5	□100	35	67
	GA·GB·GC·GD·GE·GF·GG	249	152	□115	35	67	283.5	186.5	□115	35	67
	HA•HC•HD	249	152	□130	35	67	283.5	186.5	□130	35	67
VRL-155B-□-□-28**	HB	259	162	□130	45	77	293.5	196.5	□130	45	77
()	JA•JB•JC	249	152	□150	35	67	283.5	186.5	□150	35	67
Input shaft bore ≦ ϕ 28	KA•KB	249	152	□180	35	67	283.5	186.5	□180	35	67
	KD	259	162	□180	45	77	293.5	196.5	□180	45	77
	LA	249	152	□200	35	67	283.5	186.5	□200	35	67
	MA	249	152	□220	35	67	283.5	186.5	□220	35	67
	HA	264	167	□130	45	82	298.5	201.5	□130	45	82
	НВ	259	162	□130	40	77	293.5	196.5	□130	40	77
VDI 1550 0 0 0000	JA	264	167	□150	45	82	298.5	201.5	□150	45	82
VRL-155B-□-□-38**	KA•KB•KC	264	167	□180	45	82	298.5	201.5	□180	45	82
Input shaft bore $\leq \phi$ 38	LA	264	167	□200	45	82	298.5	201.5	□200	45	82
[Impac share boro = \$ 30]	LB	274	177	□200	55	92	308.5	211.5	□200	55	92
	MA·MB	264	167	□220	45	82	298.5	201.5	□220	45	82
	NA	264	167	□250	45	82	298.5	201.5	□250	45	82
	KB•KC	285	188	□180	55	98					
	KA	305	208	□180	75	118					
VRL-155B-□-□-48**	LA	285	188	□200	55	98					
(MA	285	188	□220	55	98					
Input shaft bore≦ <i>ф</i> 48	MB	305	208	□220	75	118					
	NA	305	208	□250	75	118					
	PA	305	208	□280	75	118					

 $[\]mbox{\ensuremath{\mbox{\%}}}\mbox{\ensuremath{1}}$ Single reduction : 1/3 $\mbox{\ensuremath{\sim}}\mbox{\ensuremath{1/10}}$, Double reduction : 1/15 $\mbox{\ensuremath{\sim}}\mbox{\ensuremath{1/100}}$

 $[\]ensuremath{\ensuremath{\,\times}}$ 2 Bushing will be inserted to adapt to motor shaft.

Model number	**: Adapter code			Single					Double		
Woder namber	Adapter code	L1	L2	L3	L4	L5	L1	L2	L3	L4	L5
	FA•FB•FC						316	216	□100	35	67
	GA-GB-GC-GD-GE-GF-GG						316	216	□115	35	67
	HA•HC•HD						316	216	□130	35	67
VRL-205B-□-□-28**	НВ						326	226	□130	45	77
Input shaft bore $\leq \phi 28$	JA•JB•JC						316	216	□150	35	67
Input shart bore ≤ \$\phi 28\$	KA•KB						316	216	□180	35	67
	KD						326	226	□180	45	77
	LA						316	216	□200	35	67
	MA						316	216	□220	35	67
	HA	286.5	186.5	□130	45	82	331	231	□130	45	82
	HB	281.5	181.5	□130	40	77	326	226	□130	40	77
VRL-205B-□-□-38**	JA	286.5	186.5	□150	45	82	331	231	□150	45	82
VIL 2008 3044	KA•KB•KC	286.5	186.5	□180	45	82	331	231	□180	45	82
Input shaft bore $\leq \phi$ 38	LA	286.5	186.5	□200	45	82	331	231	□200	45	82
[(LB	296.5	196.5	□200	55	92	341	241	□200	55	92
	MA·MB	286.5	186.5	□220	45	82	331	231	□220	45	82
	NA	286.5	186.5	□250	45	82	331	231	□250	45	82
	KB•KC	302.5	202.5	□180	55	98	347	247	□180	55	98
	KA	322.5	222.5	□180	75	118	367	267	□180	75	118
VRL-205B-□-□-48**	LA	302.5	202.5	□200	55	98	347	247	□200	55	98
(MA	302.5	202.5	□220	55	98	347	247	□220	55	98
Input shaft bore ≦ ϕ 48	MB	322.5	222.5	□220	75	118	367	267	□220	75	118
	NA	322.5	222.5	□250	75	118	367	267	□250	75	118
	PA	322.5	222.5	□280	75	118	367	267	□280	75	118
	MA·MB·MC·MD	334	234	□220	80	122					
VRL-205B-□-□-65**	NA	334	234	□250	80	122					
Input shaft bore $\leq \phi$ 65	PA	354	254	□280	100	142					
Input shart bore ≤ \$\phi\$ 65	PB	364	264	□280	110	152					
	QA	354	254	□320	100	142					

 $[\]divideontimes$ 1 Single reduction : 1/3 \sim 1/10, Double reduction : 1/15 \sim 1/100

 $[\]ensuremath{\cancel{\times}}\xspace\,2$ Bushing will be inserted to adapt to motor shaft.

Madalasashaa	state Adamban and			Single					Double		
Model number	**:Adapter code	L1	L2	L3	L4	L5	L1	L2	L3	L4	L5
	HA						366.5	240.5	□130	45	82
	НВ						361.5	235.5	□130	40	77
VRL-235B-□-□-38**	JA						366.5	240.5	□150	45	82
VRL-233B-∐-∐-3644	KA•KB•KC						366.5	240.5	□180	45	82
Input shaft bore $\leq \phi$ 38	LA						366.5	240.5	□200	45	82
	LB						376.5	250.5	□200	55	92
	MA•MB						366.5	240.5	□220	45	82
	NA						366.5	240.5	□250	45	82
	KB•KC	347.5	221.5	□180	55	98	382.5	256.5	□180	55	98
	KA	367.5	241.5	□180	75	118	402.5	276.5	□180	75	118
VRL-235B-□-□-48**	LA	347.5	221.5	□200	55	98	382.5	256.5	□200	55	98
(MA	347.5	221.5	□220	55	98	382.5	256.5	□220	55	98
Input shaft bore ≦ ϕ 48	MB	367.5	241.5	□220	75	118	402.5	276.5	□220	75	118
· ·	NA	367.5	241.5	□250	75	118	402.5	276.5	□250	75	118
	PA	367.5	241.5	□280	75	118	402.5	276.5	□280	75	118
	MA·MB·MC·MD	371.5	245.5	□220	80	122					
VRL-235B-□-□-65**	NA	371.5	245.5	□250	80	122					
(, , , , , , , , , , , , , , , , , , ,	PA	391.5	265.5	□280	100	142					
Input shaft bore $\leq \phi$ 65	PB	401.5	275.5	□280	110	152					
	QA	391.5	265.5	□320	100	142					

 $[\]mbox{\ensuremath{\mbox{\%}}}\mbox{\ensuremath{1}}$ Single reduction : 1/13 $\mbox{\ensuremath{\sim}}\mbox{\ensuremath{1/10}}$, Double reduction : 1/15 $\mbox{\ensuremath{\sim}}\mbox{\ensuremath{1/100}}$

 $[\]ensuremath{\ensuremath{\%}}\xspace 2$ Bushing will be inserted to adapt to motor shaft.

MEMO	

Mounting procedure to the motor

Wipe off anti-rust agent and oil on the motor shaft.

Remove the plug.

Turn the input shaft until the cap screw is seen. Make sure the cap screw is loosened. Please place reducer vertically on the flat surface so the motor mounting part faces up.

In case the bushing has been attached, Please fix it to the reducer as the drawing below.

Carefully insert the motor shaft into the input shaft. (It should be inserted smoothly) Make sure the motor flange is perfectly fit to the reducer's flange.

Tighten the motor installing bolts to the proper torque. (See table 1)

Reducer installation

After confirming the installation surface is flat and clean, tighten the bolt using a torque wrench to the proper torque.(See table2)

Tighten the clamping bolt of the input shaft with torque wrench to the proper torque. (See table 1) $\,$

Reinstall the plug. The procedure is done.

Table 1

Bolt size	Motor inst	alling bolts	Clamping bolt				
	Nm kgfm		Nm	kgfm			
М3	1.1	0.11	1.9	0.18			
M4	2.5	0.26	4.3	0.44			
M5	5.1	0.52	8.7	0.89			
M6	8.7	0.89	15	1.5			
M8	21	2.1	36	3.7			
M10	42	4.3	71	7.2			
M12	72	7.3	125	13			
M16	134 14		-	_			

Table 2

Table Z		
Bolt size	Tightenir	ng torque
	Nm	kgfm
М3	1.9	0.18
M4	4.3	0.44
M5	8.7	0.89
M6	15	1.5
M8	36	3.7
M10	71	7.2
M12	125	13
M16	310	32
M20	603	62

※Recommended bolt: Strength 12.9

Servo Motor Manufacturer List

Servo Motor Manufacturer List	
■ Japanese Servo Motor Manufacturer	
Panasonic Corporation	TOSHIBA MACHINE CO.,LTD.
YASKAWA Electric Corporation	FANUC CORPORATION
Mitsubishi Electric Corporation	TAMAGAWA SEIKI CO.,LTD.
FUJI ELECTRIC CO.,LTD.	Nikki Denso
OMRON Corporation	Hitachi Industrial Equipment Systems Co.,Ltd.
SANYO DENKI CO.,LTD.	Sanmei Co.,Inc.
KEYENCE CORPORATION.	NIDEC SANKYO CORPORATION
■ Global Servo Motor Manufacturer	
ALLEN BRADLEY	BECKHOFF
ABB	LENZE
B&R	LUST
BALDOR	PARKER
BAUMULLER	SAMSUNG
BOSCH REXROTH	SCHNEIDER
DELTA	SIEMENS
EMERSON (CONTROL TECHNIQUES)	TECO
ESTUN	GOLDEN AGE

^{*} For inquries for other servomotor manufacturer and servomotor series, please consult our subsidiary in your area.

Safety Precautions

Cautions for storage

Whenever temporarily keeping the product, keep the following directions:

- ① Keep in a clean and dry place.
- 2 Whenever storing outdoors or in a humid place, put in a box so that it does not directly contact rain or external air and cover with a vinyl sheet(Take a measure to prevent rust.).

■ Cautions for operation

■ When the reducer is delivered to you · · ·

When the product delivered, please confirm that you received the exact same model you have ordered.

Please wipe out the input and output shaft of the reducer which is covered by anti-corrosive oil.

- * Please remove the rubber cap on the input shaft before you wipe the shafts.
- ** Lubricant(grease) is already filled in the reducer.

It is available as it is.

■Fixation & installation

- Avoid use in a place where rain or water drops directly.
 - In case of use outdoors or in a place where dust and water drops, consult in advance.
- Install at 0°C ~40°C of surrounding temperature.
 - · In case of use at temperature out of the above-mentioned range, contact the headquarters and consult on this.
- Firmly fix with a bolt onto a solid stand without vibration.
- Install in consideration of convenience in repair and inspection.

■ Cautions prior to starting the operation

- Reducer can be used soon after arrival, since it has already been filled out with lubrication.
- At initial operation, check the rotating direction of the output shaft and then gradually apply load.

■ Cautions during operation

- Avoid overload.
- Ensure that input speed shall not be the number of revolutions beyond the specification.
- In the following cases, stop the operation and check the following points:
 - · If temperature sharply increases
 - · If an abnormal noise appears sharply
 - · If the number of revolutions becomes unstable sharply
- These may be caused by the following matters, so rapidly respond to it or contact us.
 - Is it under overload condition?
 - · Is lubricant insufficient or deteriorated, or is lubricant of other type used?
 - · Is the axis, gear, and motor side damaged?
 - · Is jointing with other machines poor?

■ Disassembly

● ABLE REDUCER is designed not to allow disassembly.

Warranty

• A warranty period is one year after the product is delivered to you.

Lubricant use

- The ABLE REDUCER is of grease-seal type in all models.
 - A specified amount of grease is filled at factory release, so you can use as soon as it is delivered to you.
- It is impossible to exchange grease.
- In case of use at 0°C ~40°C of surrounding temperature at usual times, consider this in advance.

■ Daily check points

- Is reducer case temperature excessively high during operation? (Up to + 50°C is not significant.)
- Is there an abnormal noise in the bearing, gear, etc?
- Is there abnormal vibration in the reducer?
 - * Upon an abnormal phenomenon, immediately stop the operation and contact us.
- Is there a lubricant leak?
- * Upon an oil leak, contact us.

Safety Precautions

■Periodic check points

- Are there overload and abnormal rotation?
- Are free, sprocket, and reducer assembling bolts loose?
- Is there an abnormal condition in the electric system?
- Checkup and repair of major parts
- * Upon an abnormal condition, immediately stop the operation and contact us.
- Oil leak
- * Upon an oil leak, contact us.

■ Scrapping

Whenever scrapping the ABLE REDUCER, classify the parts by material into industrial wastes as specified in the laws and regulations of self-governing bodies. Material of parts can be divided into four:

- ① Rubber parts: Oil seal, seat packing, rubber cap, seal used for bearing on the motor flange, etc.
- ② Aluminum parts: Motor flange, output shaft holder
- ③ Grease: Wipe off grease attached to parts with dry cloth and scrap into oils.
- 4 Iron parts: Parts other than those mentioned in the above

WARRANTY PROVISION

- · Warranty scope is limited to the use in Japan only.
- · Warranty scope is the delivered product only.

■ THE EXPENSES AND LOSSES THAT MENTIONED BELOW ARE NOT INCLUDED IN WARRANTY

1)The transport charges for repairing of our products.

2)The fee for the removal operation, reinstallation and other related operation in case our product is installed to the other machine. 3)The loss of the chances of use and indirect damages caused by the interruption of the services caused by our product's defects. 4)All other secondary expenses and losses.

You can download the CAD drawings(2D · 3D) of ABLE REDUCER VRS, VRL, VRB series.

http://www.nidec-shimpo.co.jp/en/

Choose from [Make a selection from the motor list] and [Make a selection from load condition].

DXF, IGS, STP format data can be downloaded.

We are making efforts for quality improvement on the basis of the concept of total quality control.

Deming Award to be given to enterprises practicing excellent quality control

■NIDEC-SHIMPO has obtained ISO 9001/ISO 14001 certification of quality assurance.

ISO 9001

■Range of registrations

Design, development, manufacturing, and relevant service(refurbishing) of the following products:

- **O**CVT
- Reducer
- Electronic measuring instrument(Digital revolution indicator/ Stroboscope)
- Control units(digital controller)
- Ceramic devices(motor plane/kiln)

ISO 14001

■Range of registrations

Design, development, manufacturing, and refurbishing of CVT, reducer, measuring instruments, control units, ceramic devices, and other industrial devices

●Factories:

